\(n\in N\)sao cho :

a) \(15-2n⋮n+1\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2020

Ta có\(15-2n⋮n+1\)

\(\Rightarrow17-2\left(n+1\right)⋮n+1\)

\(\Rightarrow17⋮n+1\)

\(\Rightarrow n+1\inƯ\left(17\right)=\left\{1;17\right\}\)

\(\Rightarrow n=\left\{0;16\right\}\)

5 tháng 11 2020

Ta có \(6n+9⋮4n-1\)

\(\Rightarrow4\left(6n+9\right)⋮4n-1\)

\(\Rightarrow24n+36⋮4n-1\)

\(\Rightarrow6\left(4n-1\right)+42⋮4n-1\)

\(\Rightarrow42⋮4n-1\)

\(\Rightarrow4n-1\inƯ\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)

\(n\in N\Rightarrow n=\left\{1;2\right\}\)

25 tháng 7 2017

6n+9\(⋮\)4n-1 ->4.(6n+9)\(⋮\)4n-1

->24n+36\(⋮\)4n-1

->24n-6+42\(⋮\)4n-1

->6(4n-1)+42\(⋮\)4n-1

->4n-1 thuoc uoc cua 42 ma n\(\supseteq\)1 nen 4n-1\(\supseteq\)3

4n-13672142
n17/4211/243/4

ma n laf so tu nhien nen n=1,2

16 tháng 7 2016

a) \(n^2-3n+9\)chia het cho \(n-2\)

\(\Leftrightarrow\)\(n^2-2n-n-2+11\)chia het cho \(n-2\)

\(\Leftrightarrow\)\(\left(n-2\right)\left(n+1\right)+11\)chia het cho \(n-2\)

\(\Leftrightarrow\)11 chia het cho \(n-2\)

\(\Rightarrow\)\(n-2\in U\left(11\right)\)\(\Rightarrow\)\(n-2\in\left\{-11;-1;1;11\right\}\)

                                                   \(\Rightarrow\)\(n\in\left\{-9;1;3;13\right\}\)

16 tháng 7 2016

b) 2n-1 chia hết cho n-2

\(\Rightarrow2n-2+3\) chia hết cho\(n-2\)

\(\Rightarrow3\)chia hết cho \(n-2\)

\(\Rightarrow n-2\in U\left(3\right)\)\(\Rightarrow n-2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)

18 tháng 12 2018

\(2n+9⋮3n+1\)

\(\Rightarrow3\left(2n+9\right)⋮3n+1\)

\(\Rightarrow2\left(3n+1\right)+25⋮3n+1\)

\(\Rightarrow25⋮3n+1\)

\(\Rightarrow3n+1\in\left\{5,25,1,-5,-25,-1\right\}\)

\(n\in\left\{8,0\right\}\)

18 tháng 12 2018

\(5n+2⋮9-2n\)

\(\Rightarrow2\left(5n+2\right)⋮9-2n\)

\(\Rightarrow-5\left(9-2n\right)-41⋮9-2n\)

\(41⋮9-2n\)

\(\Rightarrow9-2n\in\left\{41,-41,1,-1\right\}\)

\(\Rightarrow n\in\left\{-16,25,4,-5\right\}\)

15 tháng 8 2018

Ta có : \(n+4=n-1+\)\(5\)

Ta thấy : \(\left(n-1\right)⋮\left(n-1\right)\)

Nên \(\left(n+4\right)⋮\left(n-1\right)\Leftrightarrow5⋮\)\(\left(n-1\right)\)

\(\Leftrightarrow\left(n-1\right)\inƯ\left(5\right)=\)\((1;5)\)

N - 1     1    5
   N  2  6
15 tháng 8 2018

a) \(n+4⋮n-1\Rightarrow\left(n-1\right)+5⋮n-1\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)\)

\(\Rightarrow n-1\in\left\{1;5;-1;-5\right\}\Rightarrow n\in\left\{2;6;0;-4\right\}\)

b) \(n^2+2n-3=\left(n^2+n\right)+n-3=n\left(n+1\right)+n-3\)

vì \(n\left(n-1\right)⋮n-1\)\(\Rightarrow n-3⋮n+1\Rightarrow\left(n+1\right)-4⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)\)

\(\Rightarrow n-1\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow n\in\left\{2;3;5;0;-1;-3\right\}\)

5 tháng 1 2019

a)

\(n+5⋮n+1\)

\(\Rightarrow n+1+4⋮n+1\)

\(\Rightarrow4⋮n+1\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;-2;1;-3;3;-5\right\}\)

5 tháng 1 2019

\(a,\left(n+5\right)⋮\left(n+1\right)\Leftrightarrow\left(n+1\right)+4⋮\left(n+1\right)\)

\(\Leftrightarrow4⋮n+1\left(n\inℤ\right)\)

\(\Leftrightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow n=-2;0;-3;1;-5;3\)

Vậy \(n=-5;-3;-2;0;1;3\)

15 tháng 6 2017

2/ Ta có : 4x - 3 \(⋮\) x - 2

<=> 4x - 8 + 5  \(⋮\) x - 2

<=> 4(x - 2) + 5  \(⋮\) x - 2

<=> 5 \(⋮\)x - 2 

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x - 2-5-115
x-3137