\(n\in N\)  để A chia hết cho B

A= \(13x^4y^3-5x^3y^3+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

cho mình hỏi tại sao có 2 lớn hơn hoặc bằng n

1 lớn hơn hoặc bằng n ? ko hiểu

 

19 tháng 10 2018

\(\left(5x^3-7x^2+x\right):3x^n=\frac{5}{3}x^{3-n}-\frac{7}{3}x^{2-n}+\frac{1}{3}x^{1-n}\)

Để \(\left(5x^3-7x^2+x\right)⋮3x^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)

\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)

\(1-n\ge0\)\(\Leftrightarrow\)\(n\le1\)

Mà \(n\inℕ\) nên \(0\le n\le1\)\(\Rightarrow\)\(n\in\left\{0;1\right\}\)

\(\left(13x^4y^3-5x^3y^3+6x^2y^2\right):5x^ny^n=\frac{13}{5}x^{4-n}y^{3-n}-x^{3-n}y^{3-n}+\frac{6}{5}x^{2-n}y^{2-n}\)

Để \(\left(13x^4y^3-5x^3y^3+6x^2y^2\right)⋮5x^ny^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)

\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)

Mà \(n\inℕ\) nên \(0\le n\le2\)\(\Rightarrow\)\(n\in\left\{0;1;2\right\}\)

Chúc bạn học tốt ~ 

20 tháng 10 2018

- \(A⋮B\Leftrightarrow\left[{}\begin{matrix}5x^3⋮3x^n\\-7x^2⋮3x^n\\x⋮3x^n\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\le3\\n\le2\\n\le1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}n=0;1;2;3\\n=0;1;2\\n=0;1\end{matrix}\right.\Leftrightarrow n=0;1\)

-\(A⋮B\Leftrightarrow\left[{}\begin{matrix}13x^4y^3⋮5x^ny^n\\-5x^3y^3⋮5x^ny^n\\6x^2y^2⋮5x^ny^n\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\le4;n\le3\\n\le3\\n\le2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=0;1;2;3\\n=0;1;2;3\\n=0;1;2\end{matrix}\right.\Leftrightarrow n=0;1;2\)

19 tháng 10 2018

t

21 tháng 10 2017

Cảm ơn bạn nhiều!

11 tháng 7 2019

\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)

\(b,5x^3y^2-25x^2y^3+40xy^4\)

\(=5xy^2\left(x^2-5xy+8y^2\right)\)

\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)

\(=-2x^2y^2\left(2x-3+4x^2y\right)\)

\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)

\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)

\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)

\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)

\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)

\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(a-b-c\right)\)

\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)

\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)

\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)

11 tháng 7 2019

a,3x3y315x2y2=3x2y2(xy5)a,3x3y3−15x2y2=3x2y2(xy−5)

b,5x3y225x2y3+40xy4b,5x3y2−25x2y3+40xy4

=5xy2(x25xy+8y2)=5xy2(x2−5xy+8y2)

c,4x3y2+6x2y28x4y3c,−4x3y2+6x2y2−8x4y3

=2x2y2(2x3+4x2y)=−2x2y2(2x−3+4x2y)

d,a3x2y52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y

=a3x2(y52x2+23ay)=a3x2(y−52x2+23ay)

e,a(x+1)b(x+1)=(x+1)(ab)e,a(x+1)−b(x+1)=(x+1)(a−b)

f,2x(x5y)+8y(5yx)f,2x(x−5y)+8y(5y−x)

=2x(x5y)8y(x5y)=(x5y)(2x8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)

g,a(x2+1)+b(1x2)c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)

=(x2+1)(abc)=(x2+1)(a−b−c)

h,9(xy)227(yx)3h,9(x−y)2−27(y−x)3

=9(xy)2+27(xy)3

11 tháng 6 2018

Bạn làm bài kiểm tra hả sao nhiều bài tek. Mk làm mất khá nhiều tg luôn đó Ôn tập cuối năm phần số họcÔn tập cuối năm phần số họcÔn tập cuối năm phần số họcÔn tập cuối năm phần số học

11 tháng 6 2018

Có một số câu thì mình không làm được. Mong bạn thông cảm!!!

Ôn tập cuối năm phần số họcÔn tập cuối năm phần số học

3 tháng 8 2017

Bài 2:

\(g\left(x\right)=x^2+9x+20=\left(x+4\right)\left(x+5\right)\)

Để \(f\left(x\right)=x^3+ax^2+bx-60\) chia hết cho \(g\left(x\right)=\left(x+4\right)\left(x+5\right)\) thì

\(\left\{{}\begin{matrix}f\left(-4\right)=0\\f\left(-5\right)=0\end{matrix}\right.\)

Với \(f\left(-4\right)\) ta có:

\(f\left(-4\right)=-64+16a-4b-60=0\)

\(\Leftrightarrow16a-4b=124\)

(1)

Với \(f\left(-5\right)\) , ta có:

\(f\left(-5\right)=-125+25a-5b-60=0\)

\(\Leftrightarrow25a-5b=185\)(2)

Từ (1) và (2) , ta có:

\(\left\{{}\begin{matrix}16a-4b=124\\25a-5b=185\end{matrix}\right.\)

Giải hệ ta được :

\(\left\{{}\begin{matrix}a=6\\b=-7\end{matrix}\right.\)

p/s: Lm xog chả bk mk lm cái zề nữa hiha

T.Thùy Ninh

3 tháng 8 2017

Theo bài toán:

\(x^2+5x+4=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\)\(x^5+x^4-15x^3-5x^2+34x+24\)

\(=x^5+x^4-15x^3-15x^2+10x^2+10x^2+24x+24\)\(=x^4\left(x+1\right)-15x^2\left(x+1\right)+10x\left(x+1\right)+24\left(x+1\right)\)\(=\left(x+1\right)\left(x^4-15x^2+10x+24\right)\)

Ta có:

\(\dfrac{\left(x^5+x^4-15x^3-5x^2+34x+24\right)}{x^2+5x+4}\)

\(=\dfrac{\left(x+1\right)\left(x^4+15x^2+10x+24\right)}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^4+15x^2+10+24}{x+4}\) \(=\dfrac{x^4+4x^3-4x^3-16x^2+x^2+4x+6x+24}{x+4}\) \(=\dfrac{x^3\left(x+4\right)-4x^2\left(x+4\right)+x\left(x+4\right)+6\left(x+4\right)}{x+4}\)

\(=\dfrac{\left(x+4\right)\left(x^3-4x^2+x+6\right)}{x+4}\)

\(=x^3-4x^2+x+6\)

p/s : ko bk đúng kh nữa . Định chia theo cách bình thường nhưng lười lấy giấy ra rồi chụp ảnh nên lm theo cách này. Sai thôg cảm nha

24 tháng 2 2020

Có A=\(\left(x^3+x^2-3x\right)+\left(-2x^2-2x+a+2\right)=-x\left(-x^2-x+3\right)-2x^2-2x+a+2⋮-x^2-x+3\)

\(\Rightarrow C=-2x^2-2x+a+2⋮B\). Chỉ có thể C=\(2\left(-x^2-x+3\right)\Rightarrow a+2=6\Rightarrow a=4\)

24 tháng 2 2020

\(A=\left(2x^3+3x^2+4x\right)+\left(-10x^2-15x+a-8\right)=x\left(2x^2+3x+4\right)+\left(-10x^2-15x+a-8\right)⋮2x^2+3x+4\)\(\Rightarrow C=-10x^2-15x+a-8⋮2x^2+3x+4\)

Chỉ có thể C=\(-5\left(2x^2+3x+4\right)\) \(\Rightarrow a-8=-20\Rightarrow a=-12\)