K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

 Số đó cộng thêm 1 thì chia hết cho 8, cộng thêm 3 chia hết cho 31. 
Số đó viết dưới dạng sau 
abc+3=31n 
abc+1=8m (hoặc abc+1=2*4m) 
Nhìn vào vế thứ 2 ta thấy abc là một số lẻ (để khi cộng với 1 tạo nên một số chẵn mới chia hết cho 8). 
abc là một số lẻ nên abc+3 phải là một số chẵn, nên n phải là một số chẵn và lớn hơn 4. 
Vậy n có thể là 6,8,10,12,... 
6*31=186 (không thỏa mãn) 
8*31=248 (không thỏa mãn) 
10*31=310 (không thỏa mãn) 
12*31=372 (không thỏa mãn) 
14*31=434 (thỏa mãn) 
Vậy n=14 =>abc=431 (vì abc+3=31.n) 
Thử lại: 431:31=13 dư 28 
431:8 = 53 dư 7 
Vậy số càn tìm là 431 

11 tháng 11 2017

lLê Duy Tâm:

Theo đầu bài, ta có:

\(abc+3=31e\)

\(abc+1=8d\)

Vì abc là 1 số lẻ nên e sẽ là 1 số lẻ => e là 1 số chẵn lớn hơn 4

Ta dùng phương pháp chọn, loại:

6 x 31 = 186 (loại)

8 x 31 = 248 (loại)

10 x 31 = 310 (loại)

12 x 31 = 372 (loại)

14 x 31 = 434 (chọn)

Vậy => e = 14 => abc = 431

29 tháng 8 2021

Bài 1: 
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2
​n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 ​chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53

Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9)
 ​chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) ​chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

29 tháng 8 2021

Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).

Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài

Bài 2: 

Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).

Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

8 tháng 1 2017

Gọi n là số cần tìm. Ta có: n + 1 ⋮ 8, do đó n + 65 ⋮ 8

Mặt khác: n + 3 ⋮ 31, do đó n + 65 ⋮ 31

Vậy n + 65 là bội chung của 8 và 31 và n + 65 < 1065

Các bội chung của 8 và 31 nhỏ hơn 1065 là : 248 ; 496 ; 744 ; 992.

Do đó n + 65 ∈ { 248 ; 496 ; 744 ; 992 }.

Vậy n ∈ { 183 ; 431; 679 ; 927 }

30 tháng 7 2018

Gọi n là số cần tìm. Ta có: n + 1 ⋮ 8, do đó n + 65 ⋮ 8

Mặt khác: n + 3 ⋮ 31, do đó n + 65 ⋮ 31

Vậy n + 65 là bội chung của 8 và 31 và n + 65 < 1065

Các bội chung của 8 và 31 nhỏ hơn 1065 là : 248 ; 496 ; 744 ; 992.

Do đó n + 65 ∈ { 248 ; 496 ; 744 ; 992 }.

Vậy n ∈ { 183 ; 431; 679 ; 927 }

22 tháng 11 2015

gọi số đó là a.theo bài ra , ta có :

a:8= q ( dư 7 )

a:31=k(dư28)

ta có a=8q+7

       a=31k+28

a+65=8q+72

a+65=31k+93

ta thấy: a+65 chia hết cho 8 và 31 suy ra a+65 thuộc BC(8;31)

vì 8 và 31 là 2 số nguyên tố cùng nhau nên ta có BCNN(8;31)=8.31=248

BC(8;31)=B(248)={ 0;248;496;744;992;1240...}

 a+65={ 0;248;496;744;992;1240...} mà a+65<1000 nên a+65={ 248;496;744;992}

vậy a={ 183;431;679;927}