Tìm nhân tử chung của biểu thức 5 x 2 (5 – 2x) + 4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Ta có 5 x 2 (5 – 2x) + 4x – 10

= 5 x 2 (5 – 2x) – 2(-2x + 5)

= 5 x 2 (5 – 2x) – 2(5 – 2x)

Nhân tử chung là 5 – 2x

Đáp án cần chọn là: A

24 tháng 11 2019

a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)

\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)

b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)

\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)

\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)

24 tháng 11 2019

c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\le-1\)

\(\Rightarrow V\ge\frac{1}{-1}=-1\)

Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)

\(=-\left(4x^2-8x+4\right)-1\)

\(=-\left(2x-2\right)^2-1\le-1\)

\(\Rightarrow X\ge\frac{2}{-1}=-2\)

Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

23 tháng 11 2018

\(a)\frac{2x-1}{5x-10}\)    \(\text{Đ}K:x\ne2\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}(TM)\)

\(b)\frac{x^2-x}{2x}\)    \(\text{Đ}K:x\ne0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x.(x-1)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0(lo\text{ại})\\x=1(TM)\end{cases}}\)

\(c)\frac{2x+3}{4x-5}\)      \(\text{Đ}K:x\ne\frac{5}{4}\)

\(\Leftrightarrow2x+3=0\)

\(\Leftrightarrow x=\frac{-3}{2}(TM)\)

\(d)\frac{(x-1).(x+2)}{(x-3).(x-1)}\)    \(\text{Đ}K:\hept{\begin{cases}x\ne3\\x\ne1\end{cases}}\)

\(\Leftrightarrow(x-1).(x+2)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1(l\text{oại})\\x=-2(TM)\end{cases}}\)

gửi cho 4 câu trc

23 tháng 11 2018

dài vl

27 tháng 7 2018

\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2 
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5 
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây

27 tháng 7 2018

1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất. 
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận

6 tháng 11 2019

\(C1:=3+1-3y\)

\(=4-3y\)

\(C2:\)

\(a.=3x\left(2y-1\right)\)

\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)

\(=\left(x-y+4\right)\left(x+y\right)\)

\(C3:\)

\(a.6x^2+2x+12x-6x^2=7\)

\(14x=7\)

\(x=\frac{1}{2}\)

\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)

\(\frac{26}{5}x=-\frac{13}{2}\)

\(x=-\frac{13}{2}\times\frac{5}{26}\)

\(x=-\frac{5}{4}\)

3 tháng 7 2020

Bạn Moon làm kiểu gì vậy ?

1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)

\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)

\(=4-3y\)

2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)

b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+4\right)\)

3) a,  \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)

\(< =>6x^2+2x+12x-6x^2=7\)

\(< =>14x=7< =>x=\frac{7}{14}\)

b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)

\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{26x}{5}=\frac{-13}{2}\)

\(< =>26x.2=\left(-13\right).5\)

\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)

10 tháng 3 2020

\(B=\left(\frac{2x+1}{2x-1}+\frac{4}{1-4x^2}-\frac{2x-1}{2x+1}\right):\frac{x^2+2}{2x+1}\left(x\ne\pm\frac{1}{2}\right)\)

\(\Leftrightarrow B=\left(\frac{2x+1}{2x-1}-\frac{4}{4x^2-1}-\frac{2x-1}{2x+1}\right):\frac{x^2+2}{2x+1}\)

\(\Leftrightarrow B=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{4}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right)\cdot\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow B=\frac{\left(2x\right)^2+2\cdot1\cdot2x+1-4-\left[\left(2x\right)^2-2\cdot2x\cdot1+1^2\right]}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow B=\frac{4x^2+4x-3-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow B=\frac{\left(8x-4\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(x^2+2\right)}=\frac{4\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(x^2+2\right)}=\frac{4}{x^2+2}\)

b) \(B=\frac{4}{x^2+2}\left(x\ne\pm\frac{1}{2}\right)\)

Với x=-1 (TMĐK) thay vào B ta có:

\(B=\frac{4}{\left(-1\right)^2+2}=\frac{4}{1+2}=\frac{4}{3}\)

Vậy \(B=\frac{4}{3}\)khi x=-1

17 tháng 12 2019

a) Phân thức xác định được \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}}\)

Vậy...

17 tháng 12 2019

b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)

\(P=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

21 tháng 12 2021

Answer:

Câu 1:

\(\left(5x-x-\frac{1}{2}\right)2x\)

\(=\left(4x-\frac{1}{2}\right)2x\)

\(=4x.2x-\frac{1}{2}.2x\)

\(=8x^2-x\)

\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)

\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)

\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)

\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)

\(=x^4+8x^3+19x^2+24x+48\)

Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\)\(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)

Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(= (x²+2xy+y²)-(x²-2xy+y²)\)

\(= x²+2xy+y²-x²+2xy-y²\)

\(= 4xy\)

\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)

Câu 2:

\(x^2+x=0\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

\(x^2.\left(x-1\right)+4-4x=0\)

\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)

Trường hợp 1: \(x-1=0\Rightarrow x=1\)

Trường hợp 2: \(x-2=0\Rightarrow x=2\)

Trường hợp 3: \(x+2=0\Rightarrow x=-2\)

Câu 3: Bạn xem lại đề bài nhé.

I don't now

...............

.................