Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=1 vào phương trình ta được:
x2+2.1.x-6.1-9=0
<=> x2+2x-6-9=0
<=> x2+2x-15=0
<=> x2+5x-3x-15=0
<=> x(x+5)-3(x+5)=0
<=> (x-3)(x+5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
b) Thay x=2 vào phương trình ta được:
22+2.2.m-6m-9=0
<=> 4+4m-6m-9=0
<=> -2x-5=0
<=> -2x=5
<=> \(x=\frac{-5}{2}\)
Vì \(4x⋮2;6y⋮2;10⋮2\)nên \(-5z⋮2\Rightarrow z⋮2\)(vì (-5;2)=1)
Đặt \(z=2k\left(k\in Z\right)\)
Khi đó: \(4x+6y-5z=10\Leftrightarrow4x+6y-10k=10\Leftrightarrow2x+3y-5k=5\Leftrightarrow2x=5+5k-3y\)
\(\Leftrightarrow x=\frac{5+5k-3y}{2}\Leftrightarrow x=\frac{4+4k-2y+1+k-y}{2}=2+2k-y+\frac{1+k-y}{2}\)
Đặt \(\frac{1+k-y}{2}=t\left(t\in Z\right)\)
\(\Leftrightarrow1+k-y=2t\Leftrightarrow y=1+k-2t\)
Khi đó \(x=2+2k-y+\frac{1+k-y}{2}=2+2k-1-k+2t+t=1+k+3t\)
Vậy x=1+k+3t: y=1+k-2t với \(k,t\in Z\)
1.
a.\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0\left(\forall m\in R\right)\)
b.Gia su 2 nghiem cua PT la \(x_1,x_2\left(x_1>x_2\right)\)
Theo de bai ta co;\(x_1-x_2=17\)
Tu cau a ta co:\(x_1=\frac{-4m-1+\sqrt{16m^2+33}}{2}\) \(x_2=\frac{-4m-1-\sqrt{16m^2+33}}{2}\)
\(\Rightarrow\frac{-4m-1+\sqrt{16m^2+33}}{2}-\frac{-4m-1-\sqrt{16m^2+33}}{2}=17\)
\(\Leftrightarrow\frac{2\sqrt{16m^2+33}}{2}=17\)
\(\Leftrightarrow16m^2+33=289\)
\(\Leftrightarrow m=4\)
2.
a.\(\Delta'=\left(m-1\right)^2-\left(m+2\right)\left(3-m\right)=2m^2-3m-5=\left(m+1\right)\left(2m-5\right)>0\)
TH1:\(\hept{\begin{cases}m+1>0\\2m-5>0\end{cases}\Leftrightarrow m>\frac{5}{2}}\)
TH2:\(\hept{\begin{cases}m+1< 0\\2m-5< 0\end{cases}\Leftrightarrow m< -1}\)
Xet TH1:\(x_1=\frac{-m+1+\sqrt{2m^2-3m-5}}{m+2}\) \(x_2=\frac{-m+1-\sqrt{2m^2-3m-5}}{m+2}\)
Ta co:\(x^2_1+x^2_2=x_1+x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=x_1+x_2\)
\(\Leftrightarrow\left(\frac{-2m+2}{m+2}\right)^2-\frac{-m^2+5m+6}{\left(m+2\right)^2}=\frac{-2m+2}{m+2}\)
\(\Leftrightarrow\frac{5m^2-13m-2}{\left(m+2\right)^2}=\frac{-2m^2-2m+4}{\left(m+2\right)^2}\)
\(\Rightarrow7m^2-11m-6=0\)
\(\Delta_m=121+168=289>0\)
\(\Rightarrow\hept{\begin{cases}m_1=2\left(l\right)\\m_2=-\frac{3}{7}\left(l\right)\end{cases}}\)
TH2;Tuong tu
Vay khong co gia tri nao cua m de PT co 2 nghiem thoa man \(x^2_1+x^2_2=x_1+x_2\)
Ta có \(x^2-4\left(m-1\right)x+5=0\) \(\left(a=1;b=-4\left(m-1\right);c=5\right)\)
a) Vì pt có nghiệm x=1\(\Rightarrow a+b+c=0\)
\(\Leftrightarrow1-4\left(m-1\right)+5=0\)
\(\Leftrightarrow1-4m+4+5=0\)
\(\Leftrightarrow4m=10\)
\(\Leftrightarrow m=\frac{5}{2}\)
b) Vì pt có nghiệm x1=1\(\Rightarrow x2=\frac{c}{a}=5\)