K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

Cho 3x + 5xy = 6y + 5 = 0

Chuyển vế rồi tính

Ta có: \(x^2=y^2+2y+13\Leftrightarrow x^2-y^2-2y-1=12\Leftrightarrow x^2-\left(y+1\right)^2=12\)

\(\Leftrightarrow\left(x+y+1\right)\left(x-y-1\right)=12\)

Xét thấy x+y+1>x-y-1 và x+y+1; x-y-1 là Ư(12) nên ta có bảng sau :

x+y+11264-3-2-1
x-y-1123-4-6-12
x      
y      
12 tháng 1 2021

Có thể thay đề bài từ tìm nghiệm nguyên thành tìm nghiệm.

Ta có: \(x^2-10x+29=\left(x-5\right)^2+4\ge4>0;y^2+6y+14=\left(y+3\right)^2+5\ge5>0\).

Từ đó \(\left(x^2-10x+29\right)\left(y^2+6y+14\right)\ge4.5=20\).

Do đẳng thức xảy ra nên ta phải có: \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-3\end{matrix}\right.\).

Vậy...

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$

$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$

Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$

$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$

$\Leftrightarrow x-5\vdots x^2+2(1)$

$\Rightarrow x^2-5x\vdots x^2+2$

$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$

$\Leftrightarrow 5x+2\vdots x^2+2(2)$

Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$

$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:

$\Rightarrow x^2+2\in\left\{3;9;27\right\}$

$\Rightarrow x^2\in\left\{1;7;25\right\}$

Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$

Thay vào $y$ ta tìm được: 

$x=-1\Rightarrow y=-3$

$x=5\Rightarrow y=5$

12 tháng 3 2017

từ pt suy ra((x-5)^2+4)((y+3)^2+5)-20=0

((x-5)(y+3))^2+5(x-5)^2+4(y+3)^2+20-20=0

((x-5)(y+3)^2+5(x-5)^2+4(y+3)^2=0

suy ra x=5,y=-3