K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

Biến đổi :

\(4\sin x+3\cos x=A\left(\sin x+2\cos x\right)+B\left(\cos x-2\sin x\right)=\left(A-2B\right)\sin x+\left(2A+B\right)\cos x\)

Đồng nhất hệ số hai tử số, ta có :

\(\begin{cases}A-2B=4\\2A+B=3\end{cases}\)\(\Leftrightarrow\begin{cases}A=2\\B=-1\end{cases}\)

Khi đó \(f\left(x\right)=\frac{2\left(\left(\sin x+2\cos x\right)\right)-\left(\left(\sin x-2\cos x\right)\right)}{\left(\sin x+2\cos x\right)}=2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\)

Do đó, 

\(F\left(x\right)=\int f\left(x\right)dx=\int\left(2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\right)dx=2\int dx-\int\frac{\left(\cos x-2\sin x\right)dx}{\sin x+2\cos x}=2x-\ln\left|\sin x+2\cos x\right|+C\)

18 tháng 1 2018

Chọn C.

Dựa vào đồ thị hàm số f ' ( x )  suy ra BBT của hàm số y = f(x)

 

Khẳng định 1, 2, 5 đúng, khẳng định 4 sai.

Xét khẳng định 3: Ta có:

f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) ⇒ f ( 3 ) - f ( 0 ) = f ( 1 ) - f ( 2 ) > 0  

Do đó f ( 3 ) > f ( 0 ) ⇒  Vậy khẳng định 3 đúng.

15 tháng 7 2017

22 tháng 5 2017

Chọn B

15 tháng 7 2017

Đáp án B

Ta có  y , = 0 ⇔ x = 1 x = - 2 x = 3  ,  y ,  đổi dấu qua x=1 và x=-2 , y ,  không đổi dấu qua x=3 nên hàm số có hai cực trị tại x=1 và x=-2

 

19 tháng 1 2019

24 tháng 12 2017

Đáp án B

14 tháng 7 2017

23 tháng 4 2018

26 tháng 1 2019

Chọn B.

Xét :

Có nghiệm bội chẵn  x   =   - 1 ,   x   =   1 nên dấu của f’(x) qua hai nghiệm này không đổi dấu =>  x = 1 và  x   =   - 1 không là cực trị

Có nghiệm bội lẻ x   =   2 ,   x   = - 3 2 , nên nó là hai cực trị

Kết luận: Hàm số có hai cực trị.