\(\frac{e^{2x}}{e^x+2}dx\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

a) Đặt \(1+\ln x=t\)  khi đó \(\frac{dx}{x}=dt\)  và do đó 

\(I_1=\int\sqrt{t}dt=\frac{2}{3}t^{\frac{3}{2}}+C=\frac{2}{3}\sqrt{\left(1+\ln x\right)^3}+C\)

 

b) Đặt \(\sqrt[4]{e^x+1}=t\)  khi đó \(e^x+1=t^4\Rightarrow e^x=t^4-1\) và \(e^xdx=4t^3dt\)  , \(e^{2x}dx=e^x.e^xdx=\left(t^4-1\right)4t^3dt\) 

Do đó :

\(I_2=4\int\frac{t^3\left(t^4-1\right)}{t}dt=4\int\left(t^6-t^2\right)dt=4\left[\frac{t^7}{7}-\frac{t^3}{3}\right]+C\)

    \(=4\left[\frac{1}{7}\sqrt[4]{\left(e^x+1\right)^7}-\frac{1}{3}\sqrt[4]{\left(e^x+1\right)^3}\right]+C\)

 

c) Lưu ý rằng \(x^2dx=\frac{1}{3}d\left(x^3+C\right)\) do đó :

\(I_3=\int x^2e^{x^{3+6}dx}=\frac{1}{3}\int e^{x^{3+6}}d\left(x^3+6\right)=\frac{1}{3}e^{x^{3+6}}+C\)

 

3 tháng 3 2016

Đối với cả ba nguyên hàm đã cho, ta sẽ áp dụng liên tiếp hai làn lấy nguyên hàm từng phần và trong hai lần việc chọn hàm \(u=u\left(x\right)\) là tùy ý ( còn \(dv\) là phần còn lại của biểu thức dưới dấu nguyên hàm. Sau phép lấy nguyên hàm từng phần kép đó ta sẽ thu được một phương trình bậc nhất với ẩn là nguyên hàm cần tìm

a) Đặt \(u=e^{2x}\) ,\(dv=\sin3xdx\)

Từ đó \(du=2e^{2x}dx\)   , \(v=\int\sin3xdx=-\frac{1}{3}\cos3xdx\) Do đó : 

\(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{3}\int e^{2x}\cos3xdx\)

\(=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{3}.I'_1\)\(I'_1=\int e^{2x}\cos3xdx\)

Ta áp dụng công thức lấy nguyên hàm từng phần

Đặt \(u=e^{2x}\)  ; \(dv=\cos3xdx\)   Khi đó \(du=2^{2x}dx\)\(v=\frac{1}{3}\sin2x\)

Do đó \(I'_1=\frac{1}{3}e^{2x}\sin3x-\frac{2}{3}\int e^{2x}\sin3xdx\) Như vậy :

\(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{9}e^{2x}\sin3x-\frac{4}{9}\int e^{2x}\sin3xdx\)

\(I_1=\int e^{2x}\sin3xdx\)

Tức là \(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{9}\sin3x-\frac{4}{9}I_1\)

Ta có \(I_1=\frac{3}{13}e^{2x}\left(\frac{2}{3}\sin3x-\cos3x\right)+C\)

3 tháng 3 2016

b) Đặt \(u=e^{-x}\) ; \(dv=\cos\frac{x}{2}dx\)

Từ đó :

\(du=-e^{-x}dx\)   ; \(v=\int\cos\frac{x}{2}dx=2\int\cos\frac{x}{2}d\left(\frac{x}{2}\right)=2\sin\frac{x}{2}\)

Do đó :

\(I_2=2e^{-x}\sin\frac{x}{2}+2\int e^{-x}\sin\frac{x}{2}dx\) (b)

\(\int e^{-x}\sin\frac{x}{2}dx=I'_2\)

Ta cần tính \(I'_2\)  Đặt \(u=e^{-x}\)   ; \(dv=\sin\frac{x}{2}dx\)

Từ đó :

\(du=-e^{-x}dx\)   ; \(v=\int\sin\frac{x}{2}dx=-2\cos\frac{x}{2}\)

Do đó :

\(I'_2=-2e^{-x}\cos\frac{x}{2}-2\int e^{-x}\cos\frac{x}{2}dx\)

    \(=-2e^{-x}\cos\frac{x}{2}-2I_2\)

Thế \(I'_2\)   vào (b) ta thu được phương trình bậc nhất với ẩn là \(I_2\)

\(I_2=2e^{-x}\sin\frac{x}{2}+2\left[-2e^{-x}\cos\frac{x}{2}-2I_2\right]\)

hay là

\(5I_2=2e^{-x}\sin\frac{x}{2}-4e^{-x}\cos\frac{x}{2}\) \(\Rightarrow\) \(I_2=\frac{2}{5}e^{-x}\left(\sin\frac{x}{2}-2\cos\frac{x}{2}\right)+C\)

19 tháng 3 2016

Để tìm một số nguyên hàm ta có thể lưu ý và áp dụng nhận xetsau : nguyên hàm của một phân thức mà tử số của nó là vi phân của mẫu số là bằng logarit của đại lượng tuyệt đối của mẫu số :

\(\int\frac{u'dx}{u}=\int\frac{du}{u}=\ln\left|u\right|+C\)

a) \(\int\frac{\cos2x}{\sin x\cos x}dx=2\int\frac{\cos2x}{\sin2x}dx=\int\frac{d\left(\sin2x\right)}{\sin2x}=\ln\left|\sin2x\right|+C\)

b)\(\int\frac{e^{2x}}{1-3e^{2x}}dx=-\frac{1}{6}\int\frac{-6e^{2x}}{1-3e^{2x}}dx=-\frac{1}{6}\int\frac{d\left(1-3e^{2x}\right)}{1-3e^{2x}}=-\frac{1}{6}\ln\left|1-3e^{2x}\right|+C\)

c)\(\int\frac{2x-5}{x^2-5x+7}dx=\int\frac{d\left(x^2-5x+7\right)}{x^2-5x+7}=\ln\left|x^2-5x+7\right|+C\)

                                                \(=\ln\left(x^2-5x+7\right)+C\)

d)\(\int\frac{xdx}{x^2+1}=\frac{1}{2}\int\frac{2xdx}{x^2+1}=\frac{1}{2}\int\frac{d\left(x^2+1\right)}{x^2+1}=\frac{1}{2}\ln\left(x^2+1\right)+C\)

e) \(\int\frac{dx}{\sin x}=\int\frac{\sin xdx}{\sin^2x}=\int\frac{d\left(\cos x\right)}{\cos^2x-1}=\frac{1}{2}\ln\frac{1-\cos x}{1+\cos x}+C\)

21 tháng 3 2016

a) Dùng phương pháp hữu tỉ hóa "Nếu \(f\left(x\right)=R\left(e^x\right)\Rightarrow t=e^x\)"  ta có \(e^x=t\Rightarrow x=\ln t,dx=\frac{dt}{t}\)

Khi đó \(I_1=\int\frac{t^3}{t+2}.\frac{dt}{t}=\int\frac{t^2}{t+2}dt=\int\left(t-2+\frac{4}{t+2}\right)dt\)

                \(=\frac{1}{2}t^2-2t+4\ln\left(t+2\right)+C=\frac{1}{2}e^{2x}-2e^x+4\ln\left(e^x+2\right)+C\)

 

b) Hàm dưới dấu nguyên hàm

\(f\left(x\right)=\frac{\sqrt{x}}{x+\sqrt[3]{x^2}}=R\left(x;x^{\frac{1}{2}},x^{\frac{2}{3}}\right)\)

q=BCNN(2;3)=6

Ta thực hiện phép hữu tỉ hóa theo :

"Nếu \(f\left(x\right)=R\left(x:\left(ã+b\right);\left(ax+b\right)^{r2},....\right),r_k=\frac{P_k}{q_k}\in Q,k=1,2,...,m\Rightarrow t=\left(ax+b\right)^{\frac{1}{q}}\),q=BCNN \(\left(q_1,q_2,...,q_m\right)\)"

=> \(t=x^{\frac{1}{6}}\Rightarrow x=t^{6,}dx=6t^5dt\)

Khi đó nguyên hàm đã cho trở thành :

\(I_2=\int\frac{t^3}{t^6-t^4}6t^{5dt}=\int\frac{6t^4}{t^2-1}dt=6\int\left(t^2+1+\frac{1}{t^2-1}\right)dt\)

     \(=6\int\left(t^2+1\right)dt+2\int\frac{dt}{\left(t-1\right)\left(t+1\right)}=2t^3+6t+3\int\frac{dt}{t-1}-3\int\frac{dt}{t+1}\)

     \(=2t^2+6t+3\ln\left|t-1\right|-3\ln\left|t+1\right|+C=2\sqrt{x}+6\sqrt[6]{x}+3\ln\left|\frac{\sqrt[6]{x-1}}{\sqrt[6]{x+1}}\right|+C\)

c) Hàm dưới dấu nguyên hàm có dạng :

\(f\left(x\right)=R\left(x;\left(\frac{x+1}{x-1}\right)^{\frac{2}{3}};\left(\frac{x+1}{x-1}\right)^{\frac{5}{6}}\right)\)

q=BCNN (3;6)=6

Ta thực hiện phép hữu tỉ hóa được

\(t=\left(\frac{x+1}{x-1}\right)^{\frac{1}{6}}\Rightarrow x=\frac{t^6+1}{t^6-1},dx=\frac{-12t^5}{\left(t^6-1\right)^2}dt\)

Khi đó hàm dưới dấu nguyên hàm trở thành

\(R\left(t\right)=\frac{1}{\left(\frac{t^6+1}{t^6-1}\right)^2-1}\left[t^4-t^5\right]=\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right)\)

Do đó :

\(I_3=\int\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right).\frac{-12t^5}{\left(t^6-1\right)}dt=3\int\left(t^4-t^3\right)dt\)

    \(=\frac{5}{3}t^5-\frac{3}{4}t^4+C=\frac{3}{5}\sqrt[6]{\left(\frac{x+1}{x-1}\right)^5}-\frac{3}{4}\sqrt[3]{\left(\frac{x+1}{x-1}\right)^2}+C\)

NV
24 tháng 11 2019

Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)

a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)

Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)

\(\Rightarrow9x^2dx=-6udu\)

\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)

b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)

\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)

c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)

\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)

NV
24 tháng 11 2019

d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)

\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)

\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)

e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)

\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)

f/ \(I=\int cosx.sin^3xdx\)

Đặt \(u=sinx\Rightarrow du=cosxdx\)

\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)

22 tháng 1 2016

Ta có :

\(\frac{3x+2}{x^2+2x-3}=\frac{E\left(2x+2\right)+D}{x^2+2x-3}=\frac{2E+D+2E}{x^2+2x-3}\)

Đồng nhất hệ số hai tử sốta có hệ phương trình 

\(\begin{cases}2E=3\\D+2E=2\end{cases}\) \(\Rightarrow\begin{cases}E=\frac{3}{2}\\D=-1\end{cases}\)

\(\Rightarrow\) \(\frac{3x+2}{x^2+2x-3}=\frac{\frac{3}{2}\left(2x+2\right)}{x^2+2x-3}-\frac{1}{x^2+2x-3}\)

Vậy :

\(\int\frac{3x+2}{x^2+2x-3}dx=\frac{3}{2}\int\frac{d\left(x^2+2x-3\right)}{x^2+2x-3}+\int\frac{1}{x^2+2x-3}dx\)\(=\frac{3}{2}\ln\left|x^2+2x-3\right|+J\left(1\right)\)

Tính :

\(J=\int\frac{1}{x^2+2x-3}dx=\frac{1}{4}\left(\int\frac{1}{x-1}dx-\int\frac{1}{x+3}dx\right)=\frac{1}{4}\ln\left|x-1\right|-\ln\left|x+3\right|=\frac{1}{4}\ln\left|\frac{x-1}{x+3}+C\right|\)

Do đó :  \(\int\frac{3x+2}{x^2+2x-3}dx=\frac{3}{2}\ln\left|x^2+2x-3\right|+\frac{1}{4}\ln\left|\frac{x-1}{x+3}\right|+C\)

 

22 tháng 1 2016

b) Ta có :

\(\frac{2x-3}{x^2+4x+4}=\frac{E\left(2x+4\right)+D}{x^2+4x+4}=\frac{2Ex+D+4E}{x^2+4x+4}\)

Đồng nhất hệ số  hai tử số :

Ta có hệ : \(\Leftrightarrow\)\(\begin{cases}2E=2\\D+4E=-3\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}E=1\\D=-7\end{cases}\)

Suy ra :

\(\frac{2x-3}{x^2+4x+4}=\frac{2x+4}{x^2+4x+4}-\frac{7}{x^2+4x+4}\)

Vậy : \(\int\frac{2x-3}{x^2+4x+4}dx=\int\frac{2x+4}{x^2+4x+4}dx-7\int\frac{1}{\left(x+2\right)^2}dx=\ln\left|x^2+4x+4\right|+\frac{7}{x+2}+C\)

AH
Akai Haruma
Giáo viên
9 tháng 7 2017

a)

Đặt \(u=\sqrt{x-3}\Rightarrow x=u^2+3\)

\(I_1=\int (2x-3)\sqrt{x-3}dx=\int (2u^2+3)ud(u^2+3)=2\int (2u^2+3)u^2du\)

\(\Leftrightarrow I_1=4\int u^4du+6\int u^2du=\frac{4u^5}{5}+2u^3+c\)

b)

\(I_2=\int \frac{xdx}{\sqrt{(x^2+1)^3}}=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{(x^2+1)^2}}\)

Đặt \(u=\sqrt{x^2+1}\). Khi đó:

\(I_2=\frac{1}{2}\int \frac{d(u^2)}{u^3}=\int \frac{udu}{u^3}=\int \frac{du}{u^2}=\frac{-1}{u}+c\)

c)

\(I_3=\int \frac{e^xdx}{e^x+e^{-x}}=\int \frac{e^{2x}dx}{e^{2x}+1}=\frac{1}{2}\int\frac{d(e^{2x}+1)}{e^{2x}+1}\)

\(\Leftrightarrow I_3=\frac{1}{3}\ln |e^{2x}+1|+c=\frac{1}{2}\ln|u|+c\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2017

d)

\(I_4=\int \frac{dx}{\sin x-\sin a}=\int \frac{dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}\)

\(\Leftrightarrow I_4=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x+a}{2}-\frac{x-a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x-a}{2} \right )dx}{2\sin \left ( \frac{x-a}{2} \right )}+\frac{1}{\cos a}\int \frac{\sin \left ( \frac{x+a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )}\)

\(\Leftrightarrow I_4=\frac{1}{\cos a}\left ( \ln |\sin \frac{x-a}{2}|-\ln |\cos \frac{x+a}{2}| \right )+c\)

e)

Đặt \(t=\sqrt{x}\Rightarrow x=t^2\)

\(I_5=\int t\sin td(t^2)=2\int t^2\sin tdt\)

Đặt \(\left\{\begin{matrix} u=t^2\\ dv=\sin tdt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2tdt\\ v=-\cos t\end{matrix}\right.\)

\(\Rightarrow I_5=-2t^2\cos t+4\int t\cos tdt\)

Tiếp tục nguyên hàm từng phần \(\Rightarrow \int t\cos tdt=t\sin t+\cos t+c\)

\(\Rightarrow I_5=-2t^2\cos t+4t\sin t+4\cos t+c\)

18 tháng 1 2016

a)

\(\int\frac{2\left(x_{ }+1\right)}{x^2+2x_{ }-3}dx=\int\frac{2x+2}{x^2+2x-3}dx\)

\(=\int\frac{d\left(x^2+2x-3\right)}{x^2+2x-3}=ln\left|x^2+2x-3\right|+C\)

18 tháng 1 2016

b)\(\int\frac{2\left(x-2\right)dx}{x^2-4x+3}=\int\frac{2x-4dx}{x^2-4x+3}=\int\frac{d\left(x^2-4x+3\right)}{x^2-4x+3}=ln\left|x^2-4x+3\right|+C\)

18 tháng 3 2016

a) \(\int\frac{dx}{\sqrt[3]{5x}}=\frac{1}{\sqrt[3]{5}}\int x^{-\frac{1}{3}}dx=\frac{1}{\sqrt[3]{5}}.\frac{3}{2}.x^{\frac{2}{3}}+C=\frac{3}{2\sqrt[3]{5}}+C\)

 

b) Nhân và chia nguyên hàm cho -2 ta có :

\(\int e^{-\frac{x}{2}}=-2\int e^{-\frac{x}{2}}d\left(-\frac{x}{2}\right)=-2e^{-\frac{x}{2}}+C\)

 

c) \(\int\sin\left(ax+b\right)dx=\frac{1}{a}\int\sin\left(ax+b\right)d\left(ax+b\right)=-\frac{1}{a}\cos\left(ax+b\right)+C\)

 

d) \(\int\frac{dx}{5x+4}=\frac{1}{5}\int\frac{5}{5x+4}dx=\frac{1}{5}\int\frac{d\left(5x+\text{4}\right)}{5x+4}=\frac{1}{5}\ln\left|5x+4\right|+C\)

Tích phân này có thể tính cách khác :

\(\int\frac{dx}{5x+4}=\frac{1}{5}\int\frac{1}{x+\frac{4}{5}}dx=\frac{1}{5}\int\frac{d\left(x+\frac{4}{5}\right)}{x+\frac{4}{5}}=\frac{1}{5}\ln\left|x+\frac{4}{5}\right|+C\)

21 tháng 3 2016

Ta có :\(x^3-2x^2-x+2=x\left(x^2-1\right)-2\left(x^2-1\right)=\left(x+1\right)\left(x-1\right)\left(x-2\right)\)

Ta viết biểu thức dạng \(\frac{x^2-3}{x^3-2x^2-x+2}=\frac{A_1}{x+1}+\frac{A_2}{x-1}+\frac{A_3}{x-2}\)

Từ đó 

\(A_1\left(x-1\right)\left(x-2\right)+A_2\left(x+1\right)\left(x-2\right)+A_3\left(x+1\right)\left(x-1\right)\equiv x^2-3\) (1)

hay là \(\left(A_1+A_2+A_3\right)x^2+\left(-3A_1-A_2\right)x+\left(2A_1-2A_2-A_3\right)\equiv x^2-3\)

Áp dụng phương pháp cân bằng hệ số ta có

\(x^2\)  \(A_1+A_2+A\)

\(x^1\)  \(-3A_1-A\)

\(x^0\)  \(2A_1-2A_2-A\)

\(\Rightarrow A_1=-\frac{1}{3},A_2=1,A_3=\frac{1}{3}\)