Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2
Do \(\overline{a56b}⋮45\)nên \(\overline{a56b}\) chia hết cho 5;9 vì \(\left(5,9\right)=1\)
\(TH1:b=5\Rightarrow\overline{a56b}=\overline{a565}\) chia hết cho 9
\(\Rightarrow a+5+6+5⋮9\Rightarrow a+16⋮9\)
Mà \(a\in\left\{1;2;3;4;5;6;7;8;9;0\right\}\)
\(\Rightarrow a=2\)
\(TH2:b=0\Rightarrow\overline{a56b}=\overline{a560}⋮9\)
\(\Rightarrow a+5+6+0⋮9\Rightarrow11⋮9\)
Lập luận tương tự ta có \(a=7\Rightarrow\overline{a56b}=7560\)
Gọi thương của phép chia là a thì ta có:
\(x^3+y^3+z^3=a\left(xyz\right)^2\)
Không mất tính tổng quát ta giả sử: \(x\ge y\ge z\)
Dễ thấy \(y^3+z^3⋮x^2\)
\(\Rightarrow y^3+z^3\ge x^2\left(1\right)\)
Ta lại có:
\(3x^3\ge x^3+y^3+z^3=a\left(xyz\right)^2\)
\(\Leftrightarrow3x\ge a\left(yz\right)^2\)
\(\Leftrightarrow9x^2\ge a^2y^4z^4\left(2\right)\)
Từ (1) và (2) suy ra
\(18y^3\ge9\left(y^3+z^3\right)\ge a^2y^4z^4\)
\(\Leftrightarrow z^5\le a^2yz^4\le18\)
\(\Leftrightarrow0< z\le1\)
\(\Leftrightarrow z=1\)
\(\Rightarrow a^2\le a^2y\le18\)
\(\Leftrightarrow1\le a\le4\)
Tự nhiên làm biếng quá thôi còn lại tự làm nốt nha bé.
Ta có: \(\sqrt{\frac{xyz}{\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)}}\)
\(\le\sqrt{\frac{xyz}{2x\cdot2y\cdot2z}}=\sqrt{\frac{xyz}{8xyz}}\)
\(=\sqrt{\frac{1}{8}}=\frac{\sqrt{2}}{4}< \frac{2}{4}=\frac{1}{2}\)
=> Không thể xảy ra đẳng thức
=> Đề sai
\(\left(x+y\right)^2+3x+y+1=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2>\left(x+y\right)^2\)
\(\left(x+y\right)^2+3x+y+1=\left(x+y+2\right)^2-x-3y-3=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2< \left(x+y+2\right)^2\)
Vậy \(z^2\)là số chính phương ở giữa 2 số chính phương khác là \(\left(x+y\right)^2\)và \(\left(x+y+2\right)^2\)
\(\Rightarrow z^2=\left(x+y+1\right)^2\Leftrightarrow\orbr{\begin{cases}x+y=1-z\left(1\right)\\x+y=z-1\left(2\right)\end{cases}}\)
Xét (1): \(x+y=1-z>0\Rightarrow z< 1\Leftrightarrow z=0\)Vì 0 không là số nguyên dương nên (1) vô nghiệm.
Xét (2): \(x+y=z-1\)lúc này pt có vô số nghiệm nguyên dương (x;y;z), x>0, y>0, z>1
a) ĐKXĐ: \(x;y>0\)
Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
\(\Rightarrow\frac{4y}{4xy}+\frac{4x}{4xy}=\frac{xy}{4xy}\)
\(\Rightarrow4x+4y-xy=0\)
\(\Rightarrow x\left(4-y\right)=-4y\)
\(\Rightarrow x=\frac{-4y}{4-y}=\frac{-4\left(y-4\right)-16}{-\left(y-4\right)}\)
\(\Rightarrow x=4-\frac{16}{4-y}\)
Để x nguyên dương =>\(\hept{\begin{cases}\frac{16}{4-y}< 0\\\left(4-y\right)\inƯ\left(16\right)\end{cases}}\)
\(\Rightarrow4-y\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
Tìm nốt y và thay vào tìm ra x
a/ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
Không mất tính tổng quát giả sử: \(x\ge y\)
\(\frac{1}{4}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)
\(\Leftrightarrow0< y\le8\)
\(\Rightarrow y=\left\{1;2;3;4;5;6;7;8\right\}\)làm nốt
Giả sử \(x\ge y\ge z>0\)
\(\Rightarrow2\left(x+y+z\right)\le6x\Rightarrow xyz\le6x\Rightarrow yz\le6\Rightarrow\left(y;z\right)=\left(3;2\right)=\left(1;1\right)=\left(3;1\right);\left(4;1\right)=\left(2;1\right)=\left(6;1\right)\) Vì \(y\ge z\)
Chị làm nốt ạ.