\(9x^2+6x=y^3\)

                         ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

Chuyển vế ta được:
y2+2(x6−3x3y−32)=0y2+2(x6−3x3y−32)=0
↔y2−6x3y+(2x6−64)=0<1>↔y2−6x3y+(2x6−64)=0<1>
Nhận thấy coi <1><1> là phương trình bậc hai ẩn yy
Do đó để phương trình có nghiệm và hơn nữa là nghiệm nguyên thì Δ=(6x3)2−4(2x6−64)Δ=(6x3)2−4(2x6−64) phải chính phương
Do đó đặt x3=kx3=k và (6x3)2−4(2x6−64)=q2(6x3)2−4(2x6−64)=q2
Như vậy 36k2−8k2+256=q2→28k2+256=q2→2|q→q=2t→7k2+64=t236k2−8k2+256=q2→28k2+256=q2→2|q→q=2t→7k2+64=t2
Nếu tt lẻ thì kk lẻ do đó 7k2+64≡3(mod4)→t2≡3(mod4)7k2+64≡3(mod4)→t2≡3(mod4) vô lý do số chính phương chia 44 dư 0,10,1
Như vậy tt chẵn nên kk chẵn và t=2b,k=2a→7a2+16=b2t=2b,k=2a→7a2+16=b2
Lập luận tương tự cũng cób,ab,a chẵn nên a=2m,b=2n→7m2+4=n2a=2m,b=2n→7m2+4=n2
Lập luận tương tự một lần nữa có m,nm,n chẵn nên m=2p,n=2q→7p2+1=q2<2>m=2p,n=2q→7p2+1=q2<2>
Tổng hợp các phương trình trên có k=8p,t=8qk=8p,t=8q như vậy x3=8p→2|x→x=2s→s3=px3=8p→2|x→x=2s→s3=p
Khi ấy bài này trở thành 7s6+1=q27s6+1=q2 

6 tháng 3 2018

x^3 - 9X^2 +19x -11 =0

<=> (x^3 - x^2) - (8x^2 - 8x) +(11x-11)=0

<=> x^2(x-1) - 8x(x-1) + 11(x-1)=0

<=> (x-1)(x^2-8x+11) = 0

<=> x-1=0

<=> x=1

6 tháng 3 2018

9x^3 - 6x^2 +12x=8

<=> 9x^3-6x^2+12x-8=0

<=. 3x^2(3x-2) + 4(3x-2)=0

<=> (3x-2)(3x^2 +4 ) =0

<=> 3x-2 = 0 (do 3x^2 +4 >= 4 >0)

<=> x= 2/3

24 tháng 2 2019

\(9x^3-6x^2+12x=8\)

\(\Leftrightarrow9x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(3x-2\right)^3=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

31 tháng 3 2018

Ta có: 5y2 chia hết cho 5; 345 chia hết cho 5.

Vậy: 3xphải chia hết cho 5.

=> x chia hết cho 5

Trường hợp 1: x = 0

=> PT vô nghiệm.

Trường hợp 2: x = 5

=> PT vô nghiệm

Trường hợp 3: x = 10

=> PT có nghiệm x = 10; y = 3

Trường hợp 4: x >= 15

=> VT > VP

=> PT có nghiệm duy nhất: x = 10, y = 3.

5 tháng 4 2017

tớ không biết

5 tháng 4 2017

cj lậy chú

nhây vừa thoi

2 tháng 12 2018

\(9x+2=y^2+y\Rightarrow9x+2=y\left(y+1\right)\)

\(\Rightarrow9x+2⋮2\Rightarrow9x⋮2\Rightarrow x⋮2\)

Vậy x chia hết cho 2 (cứ thay 1 số x chia hết cho 2 thì tìm được 1 số y) 

Vậy có vô số x,y thỏa mãn đề.

12 tháng 3 2021

a/ \(9x^2+y^2=18x+6y-18\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

12 tháng 3 2021

a) \(9x^2+y^2=18x+6y-18\)

\(\Rightarrow9x^2+y^2-18x-6y+9=0\)

\(\Rightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)=0\)

\(\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2=0\)

Mà \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)

Vậy ....................

Câu b để mik nghĩ  tiếp