K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

\(\Delta=100^2-4\cdot8\cdot9=9712>0\Rightarrow\) phương trình đã cho có 2 nghiệm phân biệt

X1=\(\frac{-100+\sqrt{9712}}{2\cdot9}\)

X2=\(\frac{-100-\sqrt{9712}}{2\cdot9}\)

5 tháng 5 2016

Đa thức F(x) có nhiều nhất 3 nghiệm

f(x) = \(x\left(2x^2-8x+9\right)=0\)

TH1: x=  0

TH2: \(2x^2-8x+9=0\)

\(\Delta=\left(-8\right)^2-4.1.9=28>0\)

Vậy PT có 2 nghiệm x1 = \(\frac{8+\sqrt{28}}{2}\) ; x2 = \(\frac{8-\sqrt{28}}{2}\)

Vậy F(x) có 3 nghiệm lần lượt là 

x1 = 0 ; x2 = \(\frac{8+\sqrt{28}}{2}\) ; x3 = \(\frac{8-\sqrt{28}}{2}\)

14 tháng 11 2017

a, f(x)= (x^5-x^4)-(4x^4-4x^3)+(5x^3-5x^2)-(4x^2-4x)+(4x-4)

         =x^4(x-1)-4x^3(x-1)+5x^2(x-1)-4x(x-1)+4(x-1)

        =(x^4-4x^3+5x^2-4x+4)(x-1)

       =[(x^4-2x^3)-(2x^3-4x^2)+(x^2-2x)-(2x-4)](x-1)

       =(x^3-2x^2+x-2)(x-2)(x-1)

      =(x^2+1)(x-2)^2(x-1)

NV
8 tháng 1 2024

\(\Leftrightarrow36x-20=4y^2-4y\)

\(\Leftrightarrow18\left(2x-1\right)=\left(2y-1\right)^2+1\)

Vế trái chia hết cho 3, vế phải chia 3 luôn dư 1 hoặc 2

Vậy không tồn tại cặp số nguyên x, y thỏa mãn

 

8 tháng 1 2024

 Vì  \(9x-5\equiv4\left[9\right]\) nên \(y\left(y-1\right)=y^2-y\equiv4\left[9\right]\) hay \(y^2-y-4⋮9\) 

\(\Leftrightarrow y^2-5y+4y-20+16⋮9\)

\(\Leftrightarrow\left(y-5\right)\left(y+4\right)+16⋮9\)

\(\Leftrightarrow\left(y-5\right)\left(y+4\right)-2⋮9\)

\(\Leftrightarrow\left(y-5\right)\left(y-5+9\right)-2⋮9\)

\(\Leftrightarrow\left(y-5\right)^2+9\left(y-5\right)-2⋮9\)

\(\Leftrightarrow\left(y-5\right)^2-2⋮9\)

\(\Rightarrow\left(y-5\right)^2-2⋮3\) hay \(\left(y-5\right)^2\equiv2\left(mod3\right)\)

 Điều này là vô lí vì số chính phương khi chia cho 3 không thể có số dư là 2. 

 Vậy pt đã cho không có nghiệm nguyên.

 

 

 

 

21 tháng 4 2016

bấm máy tính thấy có 1 nghiệm x=0

21 tháng 7 2023

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)

\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(A=\left|1-3x\right|+\left|3x-2\right|\)

\(A=\left|1-3x+3x-2\right|\)

\(A=\left|-1\right|=1\)

Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)

\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

21 tháng 7 2023
8 tháng 5 2019

a) Đặt t=x2\(\left(t\ge0\right)\)

\(\Rightarrow t^2+2\left(m-2\right)t+m^2-8=0\)(1)

Để pt đầu có 4 ng0 pb thì (1) cóΔ>0 và t>0

\(\Rightarrow\left\{{}\begin{matrix}m^2-4m+4-m^2+8>0\\\left\{{}\begin{matrix}m^2-8>0\\-2m+4>0\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m< 2\\m^2>8\end{matrix}\right.\)

\(\Rightarrow m< -2\sqrt{2}\)

b)Để pt đầu có 3 ng0 pb thì (1) cóΔ>0 và t>0 và t=0:

\(\Rightarrow\left\{{}\begin{matrix}m< 2\\\left[{}\begin{matrix}m^2-8=0\\-2m+4>0\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow m=-2\sqrt{2}\)

c)Để pt đầu có 2 ng0 pb thì (1) cóΔ=0 và t>0

\(\Rightarrow m=2\)

d)Để pt đầu có 1 ng0 thì (1) cóΔ=0 và t=0

=>m=2;m=-2\(\sqrt{2}\)

Vậy ko có m.

e)Để pt đầu có vô ng0 thì (1) cóΔ<0

\(\Rightarrow m>2\)

10 tháng 6 2017
  1. ĐK \(x^2-8x+18\ge0\Rightarrow x^2-8x+16+2\ge0\)\(\Rightarrow\left(x-4\right)^2+2\ge2\forall x\)TXD : R
  2. ĐK \(9x^2-6x+1>0\Rightarrow\left(3x-1\right)^2>0\forall x\ne\frac{1}{3}\)\(\Rightarrow TXD=R|\left\{\frac{1}{3}\right\}\)
30 tháng 10 2018

2x4 - 9x3 - 14x2 - 9x + 2

= (2x4 - 12x3 + 2x2) + (3x3 - 18x2 + 3x) + (2x2 - 12x + 2)

= 2x2(x2 - 6x + 1) + 3x(x2 - 6x + 1) + 2(x2 - 6x + 1

= (x2 - 6x + 1)(2x2 + 3x + 2)

= \(\left(2x^2+3x+2\right)\left(x-3-2\sqrt{2}\right)\left(x-3+2\sqrt{2}\right)\)