Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3}cosx+2sin^2\left(\dfrac{x}{2}-\pi\right)=1\)
\(\Leftrightarrow\sqrt{3}cosx+2sin^2\dfrac{x}{2}=1\)
\(\Leftrightarrow\sqrt{3}cosx-cosx=0\Leftrightarrow cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) ( k thuộc Z )
Vậy ...
22.
Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)
\(3tan^2x+2tanx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)
Nghiệm dương nhỏ nhất của pt là: \(x=arctan\left(\dfrac{1}{3}\right)\)
1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)
⇔ \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)
⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)
2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)
⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)
⇔ sinx . si
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
1.
\(\Leftrightarrow1-2sin^2x+sinx+m=0\)
\(\Leftrightarrow2sin^2x-sinx-1=m\)
Đặt \(sinx=t\Rightarrow t\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
Xét hàm \(f\left(t\right)=2t^2-t-1\) trên \(\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(f\left(-\dfrac{1}{2}\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\) ; \(f\left(\dfrac{\sqrt{2}}{2}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow-\dfrac{9}{8}\le f\left(t\right)\le0\Rightarrow-\dfrac{9}{8}\le m\le0\)
Có 2 giá trị nguyên của m (nếu đáp án là 3 thì đáp án sai)
2.
ĐKXĐ: \(sin2x\ne1\Rightarrow x\ne\dfrac{\pi}{4}\) (chỉ quan tâm trong khoảng xét)
Pt tương đương:
\(\left(tan^2x+cot^2x+2\right)-\left(tanx+cotx\right)-4=0\)
\(\Leftrightarrow\left(tanx+cotx\right)^2+\left(tanx+cotx\right)-4=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx+cotx=\dfrac{1+\sqrt{17}}{2}\\tanx+cotx=\dfrac{1-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)
Nghiệm xấu quá, kiểm tra lại đề chỗ \(-tanx+...-cotx\) có thể 1 trong 2 cái đằng trước phải là dấu "+"
Đặt \(sinx=a\), do \(x\in\left(-\frac{\pi}{4};\frac{\pi}{6}\right)\Rightarrow a\in\left(-\frac{\sqrt{2}}{2};\frac{1}{2}\right)\)
Bài toán trở thành tìm m để \(a^2-2a-m=0\) có nghiệm thuộc \(\left(-\frac{\sqrt{2}}{2};\frac{1}{2}\right)\)
\(\Leftrightarrow f\left(a\right)=a^2-2a=m\)
\(f'\left(a\right)=2a-2=0\Rightarrow a=1\)
\(\Rightarrow f\left(a\right)\) nghịch biến trên \(\left(-\frac{\sqrt{2}}{2};\frac{1}{2}\right)\Rightarrow f\left(\frac{1}{2}\right)< f\left(a\right)< f\left(-\frac{\sqrt{2}}{2}\right)\)
\(\Rightarrow-\frac{3}{4}< f\left(a\right)< \frac{1+2\sqrt{2}}{2}\)
\(\Rightarrow-\frac{3}{4}< m< \frac{1+2\sqrt{2}}{2}\)
7.
Đặt \(\left|sinx+cosx\right|=\left|\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right|=t\Rightarrow0\le t\le\sqrt{2}\)
Ta có: \(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\) (1)
Pt trở thành:
\(\frac{t^2-1}{2}+t=1\)
\(\Leftrightarrow t^2+2t-3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
Thay vào (1) \(\Rightarrow2sinx.cosx=t^2-1=0\)
\(\Leftrightarrow sin2x=0\Rightarrow x=\frac{k\pi}{2}\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\pi;\frac{3\pi}{2}\right\}\Rightarrow\sum x=3\pi\)
6.
\(\Leftrightarrow\left(1-sin2x\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sin^2x+cos^2x-2sinx.cosx\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)^2+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x-\frac{\pi}{4}=-\frac{\pi}{4}+k\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k\pi\\x=\frac{3\pi}{2}+k\pi\end{matrix}\right.\)
Pt có 3 nghiệm trên đoạn đã cho: \(x=\left\{\frac{\pi}{4};0;\frac{\pi}{2}\right\}\)
ta có : \(sin2x=\dfrac{\sqrt{2}}{2}=sin\dfrac{\pi}{4}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{4}+k2\pi\\2x=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+k\pi\\2x=\dfrac{3\pi}{8}+k\pi\end{matrix}\right.\) (\(k\in Z\))
+) \(x=\dfrac{\pi}{8}+k\pi\) ; \(x\in\left[0,2\pi\right]\) \(\Rightarrow0\le\dfrac{\pi}{8}+k\pi\le2\pi\) \(\Leftrightarrow\dfrac{-\pi}{8}\le k\pi\le\dfrac{15\pi}{8}\) \(\Leftrightarrow\dfrac{-1}{8}\le k\le\dfrac{15}{8}\) \(\Rightarrow k=0;k=1\)
\(\Rightarrow x=\dfrac{\pi}{4};x=\dfrac{\pi}{4}+\pi=\dfrac{5\pi}{4}\)
+) \(x=\dfrac{3\pi}{8}+k\pi\) \(x\in\left[0,2\pi\right]\) \(\Rightarrow0\le\dfrac{3\pi}{8}+k\pi\le2\pi\) \(\Leftrightarrow\dfrac{-3\pi}{8}\le k\pi\le\dfrac{13\pi}{8}\) \(\Leftrightarrow\dfrac{-3}{8}\le k\le\dfrac{13}{8}\) \(\Rightarrow k=0;k=1\)
\(\Rightarrow x=\dfrac{3\pi}{4};x=\dfrac{3\pi}{4}+\pi=\dfrac{7\pi}{4}\)
vậy\(x=\dfrac{\pi}{4};x=\dfrac{\pi}{4}+\pi=\dfrac{5\pi}{4}\)
\(;x=\dfrac{3\pi}{4};x=\dfrac{3\pi}{4}+\pi=\dfrac{7\pi}{4}\) bạn có thể để như thế này còn không bn có thể gôm nghiệm bằng đường tròn lượng giác nha .