\(x^2-y^2+2x-4y-10=0\)

b/

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

A=x 22x+2

=x2-2x+1+1

=(x2-2x+1)+1

=(x-1)2+1

vì (x-1)2\(\ge0\forall x\)

=>(x-1)2+1\(\ge1\)

vậy A luôn dương với mọi x

B=x2+y2+2x4y+6

=x2+2x+1+y2-4y+4+1

=(x2+2x+1)+(y2-4y+4)+1

=(x+1)2+(y-2)2+1

do (x+1)2\(\ge0\forall x\)

(y-2)2\(\ge0\forall y\)

=>(x+1)2+(y-2)2\(\ge0\)

=>(x+1)2+(y-2)2+1\(\ge1\)

=>B\(\ge1\)

vậy B luôn dương với mọi x;y

C= x2+y2+z2+4x2y4z+10

=x2+4x+4+y2-2y+1+z2-4z+4+1

=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1

=(x+2)2+(y-1)2+(z-2)2+1

do (x+2)2\(\ge0\forall x\)

(y-1)2\(\ge0\forall y\)

(\(\)z-2)2\(\ge0\forall z\)

=>(x+2)2+(y-1)2+(z-2)2\(\ge0\)

=>(x+2)2+(y-1)2+(z-2)2+1\(\ge1\)

=>C\(\ge1\)

vậy C luôn dương với mọi x;y;z

2 tháng 11 2017

bài 2: tìm x

a)\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+1+4=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy x=1; y=-2

b)\(5x^2+9y^2-12xy-6x+9=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2.3-3.y=0\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)

Vậy x=2; y=3

5 tháng 4 2017

tớ không biết

5 tháng 4 2017

cj lậy chú

nhây vừa thoi

2 tháng 2 2020

\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow x^2+2x+1-\left(y^2+y+9\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2-5=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=5\)

\(\Leftrightarrow\left(x+1+y+2\right)\left(x+1+y-2\right)=5\)

\(\Leftrightarrow\left(x+y+1+2\right)\left(x-y-2-1\right)=5\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=5\)

Ta có bảng GT:

x+y+315-1-5
x-y-151-5-1
x22-4-4
y-400-4

Vậy (x,y)= (2;4) (2;0) (4;0);(-4;4)

x,y nguyên dương là:

=> Nghiệm của nguyên dương PT là: (x,y)=(2,0)

6 tháng 8 2020

a) \(x^2+4y^2-6x-4y+10=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)

b) \(2x^2+y^2+2xy-10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-5\\x=5\end{cases}}\)

c) \(x^2+2xy+4x-4y-2xy+5=0\)

\(\Leftrightarrow x^2-4x-4y+5=0\)

Xem lại đề câu c).

6 tháng 8 2020

a) x2 + 4y2 - 6x - 4y + 10 = 0

<=> x2 - 6x + 9 + 4y2 - 4y + 1 = 0

<=> ( x - 3 )2 + ( 4y - 1 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\4y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{4}\end{cases}}\)

b) 2x2 + y2 + 2xy - 10x + 25 = 0

<=> x2 + 2xy + y2 + x2 - 10x + 25 = 0

<=> ( x + y )2 + ( x - 5 )2 = 0

<=> \(\hept{\begin{cases}x+y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5\\x=5\end{cases}}\)

c) Xem lại đề 

2 tháng 4 2017

Ta có:

\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Vì \(x,y\) nguyên dương 

Nên \(x+y+3>x-y-1>0\)

\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)

Vậy phương trình có nghiệm nguyên dương duy nhất \(\left(x,y\right)=\left(3;1\right)\)

9 tháng 12 2018

1)\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x+1-y-2\right)\left(x+1+y+2\right)=7\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Xét ước

2) \(x^2+2y^2+3xy+3x+3y=15\)

\(\Leftrightarrow x^2+y^2+2xy+y^2+xy+3x+3y=15\)

\(\Leftrightarrow\left(x+y\right)^2+y\left(x+y\right)+3\left(x+y\right)=15\)

\(\Leftrightarrow\left(x+y\right)\left(x+2y+3\right)=15\)

Xét ước

\(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow2x^2+4xy-2y^2-xy=7\)

\(\Leftrightarrow2x\left(x+2y\right)-y\left(x+2y\right)=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

Xét ước