\(x^2+2y^2+3xy+2x+2y+4=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

\(x^2+xy+2xy+2y^2+2x+2y+4=0\)

\(\Leftrightarrow x\left(x+y\right)+2y\left(x+y\right)+2x+2y+4=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+2y\right)+2\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+2y+2\right)=-4\)

Đến đây tự làm nha

25 tháng 12 2016

\(x^2+2y^2+3xy-2x-4y+3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x+y-2\right)=-3\)

25 tháng 12 2016

đề đúg hay sai vậy

 

6 tháng 9 2016

Ta có : \(2x^2+y^2+3xy+3x+2y+2=0\)

\(\Leftrightarrow y^2+y\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y  . Do đó ta xét 

\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\Rightarrow x^2-4\ge0\) \(\Rightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ , đặt \(x^2-4=k^2\Rightarrow\left(x-k\right)\left(x+k\right)=4\) . Ta luôn có x + k > x - k với k > 0 

Xét các trường hợp với x-k và x+k là các số nguyên được 

\(\begin{cases}x=2\\k=0\end{cases}\) và \(\begin{cases}x=-2\\k=0\end{cases}\)

Suy ra được : \(\begin{cases}x=-2\\y=2\end{cases}\) và \(\begin{cases}x=2\\y=-4\end{cases}\)

24 tháng 3 2018

\(x^2+2y^2+3xy-x-y+3=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+2y-1\right)=-3\)

20 tháng 11 2018

bài này mà lớp 9 á

17 tháng 5 2017

\(\hept{\begin{cases}\sqrt{2x^2-xy}=x-2y+1\left(1\right)\\x^2-3xy+2y^2=0\left(2\right)\end{cases}}\)

Điều kiện bạn tự làm nhé.

Xét PT (2) ta có

\(x^2-3xy+2y^2=0\)

\(\Leftrightarrow\left(x^2-xy\right)+\left(-2xy+2y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=y\\x=2y\end{cases}}\)

Thế x = y vào PT (1) ta được

\(\sqrt{2x^2-x^2}=x-2x+1\)

\(\Leftrightarrow\sqrt{x^2}=1-x\left(0\le x\le1\right)\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=y=\frac{1}{2}\)

Tương tự cho trường hợp còn lại. Nhớ đối chiếu điều kiện để chọn nghiệm.

17 tháng 5 2017

PT (2) thiếu \(x^2-3xy+2x^2=0\)

20 tháng 4 2017

Xét \(x^2-3xy+y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)

Đơn giản rồi nhé

4 tháng 2 2017

Ta có:  

x+ 2y+ 3xy + 3x + 5y = 15

<=> x+ 2y+ 3xy + 3x + 5y + 2 = 17

<=> (x2 + xy + 2x) + (2xy + 2y2 + 4y) + (x + y + 2) = 17

<=> (x + y + 2)(x + 2y + 1) = 17

=> (x + y + 2, x + 2y + 1) = (1,17; 17,1; - 1,-17; -17,-1)

Giải ra là tìm được x,y nhé

25 tháng 8 2019

VeryVery good.Thanks. I will give 1  for you.Love