K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2015

Bạn thử 12 trường hợp ra nha. Tuy hơi dài nhưng sẽ có cái vô nghiệm

tick nha

18 tháng 11 2015

PT đã cho <=> 

\(\left(x^2-2xy+y^2\right)+\left(x^2+4xy+4y^2\right)+x^2=45\Leftrightarrow\left(x-y\right)^2+\left(x+2y\right)^2+x^2=45\)

Phân tích 45 thành tổng của 3 bình phương ta có: \(45=2^2+4^2+5^2=2^2+5^2+4^2=4^2+2^2+5^2=4^2+5^2+2^2=5^2+2^2+4^2=5^2+4^2+2^2\)

\(45=0^2+3^2+6^2=0^2+6^2+3^2=3^2+6^2+0^2=3^2+0^2+6^2=6^2+3^2+0^2=6^2+0^2+3^2\)Bạn thử từng trường hợp ra là được

Mình không tiện làm đâu dài lắm

NV
9 tháng 8 2021

\(\Leftrightarrow x^2-2xy+5y^2-y+1=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4y^2-y+\dfrac{1}{16}\right)+\dfrac{15}{16}=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(2y-\dfrac{1}{4}\right)^2+\dfrac{15}{16}=0\) (vô nghiệm)

Ko tồn tại x; y thỏa mãn pt

a: \(\text{Δ}=\left(4m-4\right)^2-4\left(-4m+10\right)\)

\(=16m^2-32m+16+16m-40\)

\(=16m^2-16m-24\)

\(=8\left(2m^2-2m-3\right)\)

Để pT có nghiệm kép thì \(2m^2-2m-3=0\)

hay \(m\in\left\{\dfrac{1+\sqrt{7}}{2};\dfrac{1-\sqrt{7}}{2}\right\}\)

b: Thay x=2 vào PT, ta được:

\(4+8\left(m-1\right)-4m+10=0\)

=>8m-8-4m+14=0

=>4m+6=0

hay m=-3/2

Theo VI-et, ta được: \(x_1+x_2=-4\left(m-1\right)=-4\cdot\dfrac{-5}{2}=10\)

=>x2=8

9 tháng 7 2019

a) \(m\left(m-3\right)x+m-3=0\)(1)

\(\Leftrightarrow\left(xm+1\right)\left(m-3\right)=0\)

Dễ thấy phương trình trên chắc chắn có 1 nghiệm là 3 nên \(xm+1>0\)

\(\Leftrightarrow\hept{\begin{cases}x\\m\end{cases}}\)cùng dấu

Vậy m cùng dấu với x thì (1) có nghiệm duy nhất

P/S: ko chắc

28 tháng 5 2018

a) a và c trái dấu => pt luôn có nghiệm kép với mọi m

b) Ta có đenta=(-2(m-4))- 4(m2+m+3) = 4m2 - 64 - 4m2 - 4m - 12 = -74-4m

Để pt có nghiệm kép thì đenta>0 hay -74-4m>0 => m>-19 

NV
27 tháng 1 2022

\(\Leftrightarrow3^x=y\left(y+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}y=3^a\\y+2=3^b\end{matrix}\right.\) với \(b>a\) và \(a+b=x\)

\(\Rightarrow3^b-3^a=2\Rightarrow3^a\left(3^{b-a}-1\right)=2\)

Nếu \(a>0\Rightarrow3^a\left(3^{b-a}-1\right)>3>2\) (ktm)

\(\Rightarrow a=0\Rightarrow b=1\)

\(\Rightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

19 tháng 1 2020

Không biết bạn có gõ đúng đề cả 2 câu không ? Câu 2 không có nghiệm nguyên dương nhé bạn. Bạn xem lại.

19 tháng 1 2020

có đúng đề không bạn