K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Khó quá đi

4 tháng 8 2019

Ta có: \(x^2+4y^2+x=4xy+2y+2\)

        \(\Rightarrow x^2-4xy+4y^2+x-2y=2\)

      \(\Rightarrow\left(x-2y\right)^2+\left(x-2y\right)=2\)

      \(\Rightarrow\left(x-2y\right)\left(x-2y+1\right)=2\) 

Tìm các TH

Mặt khác : \(4x^2+4xy+y^2=2x+y+56\) 

                \(\Rightarrow\left(2x+y\right)^2-\left(2x+y\right)=56\)

               \(\Rightarrow\left(2x+y\right)\left(2x+y-1\right)=56\)

Tìm các TH

NV
7 tháng 9 2021

\(\Leftrightarrow4x^2-4xy+y^2=16-3y^2\)

\(\Leftrightarrow16-3y^2=\left(2x-y\right)^2\ge0\)

\(\Rightarrow y^2\le\dfrac{16}{3}\)

\(\Rightarrow y^2=\left\{1;4\right\}\)

\(\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)

- Với \(y=1\Rightarrow4x^2-4x+4=16\Leftrightarrow x^2-x-3=0\) (ko có x nguyên thỏa mãn)

- Với \(y=2\Rightarrow4x^2-8x=0\Rightarrow x=2\)

Vậy \(\left(x;y\right)=\left(2;2\right)\)

7 tháng 9 2021

cô chấm bài các bạn đi cô

15 tháng 6 2019

Ta có : 

\(4x+4y=12\)

\(\Rightarrow x+y=3\)

\(\Rightarrow x=3-y\)

Mà \(x-2y=-21\)

\(\Rightarrow3-y-2y=-21\)

\(\Rightarrow-3y=-24\)

\(\Leftrightarrow y=8\)

\(\Rightarrow4x+8.4=12\)

\(\Rightarrow4x=12-32\)

\(\Rightarrow4x=-20\)

\(\Rightarrow x=-5\)

KL \(\orbr{\begin{cases}x=-5\\y=8\end{cases}}\)

15 tháng 6 2019

x-2y=-21 và 4x+4y=12

<=> x-2y=-21 và x+y=3

trừ 2 vế , ta được

-3y=-24 và x=3-y

<=> y=8 và x = 3-8=-5

 vậy x=-5 và y=8

29 tháng 3 2016

 Câu trả lời hay nhất:  x² - 4x +y - 6√(y) + 13 = 0 
<=> (x^2 - 4x +4) + (√(y)^2 - 6√(y) + 9) = 0 
<=> (x-2)^2 + (√(y) -3)^2 = 0 
VT >=0 dấu = xảy ra <=> x = 2 ; y = 9 

b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
<=> ((xy²)² - 16xy³ + 64y²) + (4y^2 - 4xy + x^2) = 0 
<=> (xy² - 8y)^2 + (2y - x)^2 = 0 
VT >=0 => dấu = <=> xy² - 8y = 0 và 2y - x = 0 
<=> y = 0 ; x = 0 hoặc x = 4 ; y = 2 hoặc x = -4 ;y = -2 
c/ 
x² - x²y - y + 8x + 7 = 0 
<=> x²(1-y) + 8x - y + 7 = 0 
xét delta' = 4^2 - (1-y)(7-y) = 16 - 7 -y^2 + 8y = -(y^2 -8y + 16) +25 = 25 - (y-4)^2 
để pt có nghiệm thì delta' >=0 
<=> (y-4)^2 <=25 
<=> -1<= y <=9 
=> max y = 9 
=> x = 3/2 hoặc x = -1/2 
3/ 
x² - 6x + 1 =0. nhân cả 2 vế với x^(n-1) ta được 
x^(n+1) - 6x^n + x^(n-1) = 0 
với S(n) = x1ⁿ +x2ⁿ ta có: 
S(n+1) - 6S(n) + S(n-1) = 0 
<=> S(n+1) = 6S(n) - S(n-1) 
với S(1) = 6 
S(2) = 22 
=> S(3) nguyên 
=> S(4) nguyên 
=> S(n) nguyên (do biểu thức truy hồi S(n+1) = 6S(n) - S(n-1)) 
ta có: 
S(1) không chia hết cho 5 
S(2) .............................. 
=> S(3) = 6S(2) - S(1) = 6.(22 -1) = 6.21 không chia hết cho 5 
S(n) và S(n-1) ko chia hết cho 5 => 
S(n+1) = S(n) + S(n-1) ko chia hết cho 5 
 

7 tháng 1 2022

thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

9 tháng 12 2017

mik lp6

nên k bít

xin lỗi ha

6 tháng 2 2018

\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)

\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)

Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương 

nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra

26 tháng 9 2017

Đáp án A