\(x^3+y^3=91\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

19 tháng 4 2017

\(y^3-x^3=91\left(1\right)\)

Từ (1) <=> \(\left(y-x\right)\left(x^2+xy+y^2\right)=91\) (*)

\(x^2+xy+y^2>0vs\forall x,y\) nên từ (*) => y - x > 0

MK : \(91=13.7=17.3=1.91=91.1\)

Sau đó lần lượt giải các HPT

17 tháng 6 2019

Em chỉ giải 1 ví dụ thôi ạ , mấy cái còn lại giải theo cách tương tự

\(x^4+4y^4=2z^4\)

Dễ thấy \(x^4\)là số chẵn nên x là số chẵn

Đặt \(x=2a_1\left(a_1\inℕ^∗\right)\)

\(\Rightarrow\left(2a_1\right)^4+4y^4=2z^4\)

\(\Leftrightarrow16a_1^4+4y^4=2z^4\)

\(\Leftrightarrow8a_1^4+2y^4=z^4\)

Dễ thấy z4 chẵn nên z chẵn

Đặt \(z=2c_1\left(c\inℕ^∗\right)\)

Thì khi đó \(8a_1^4+2y^4=\left(2c_1\right)^4\)

\(\Leftrightarrow8a^4_1+2y^4=16c_1^4\)

\(\Leftrightarrow4a_1^4+y^4=8c_1^4\)

Dễ thấy y4 chẵn nên y chẵn

Đặt \(y=2b_1\left(b\inℕ^∗\right)\)

Khi đó pt \(4a_1^4+\left(2b_1\right)^4=8c_1^4\)

\(\Leftrightarrow4a^4_1+16b_1^4=8c_1^4\)

\(\Leftrightarrow a_1^4+4b_1^4=2c_1^4\)

Như vậy thì bộ số \(\left(a_1;b_1;c_1\right)\)là 1 nghiệm của pt đã cho

Chứng minh tương tự như vậy ta rút ra kết luận là x ; y ; z luôn chia hết cho \(2^n\left(n\in N\right)\)

Điều này chỉ đúng với x = y = z = 0

Mà pt đã cho cần có nghiệm nguyên dương nên x = y = z = 0 (loại )
Vậy pt vô nghiệm 

17 tháng 6 2019

VD 1 em có giải lúc trước trong trang Phương trình nghiệm nguyên rồi mà! 

VD2: Kí hiệu pt trên là (*)

Dễ thấy \(x^3⋮5\) nên x chia hết cho 5. Đặt \(x=5x_1\)

Phương trình trở thành: \(125x_1^3+5y^3=25z^3\Leftrightarrow25x_1^3+y^3=5z^3\) (1)

Dễ thấy \(y^3⋮5\Rightarrow y⋮5\) . Đặt \(y=5y_1\) . Phương trình (1) tương đương với:

\(25x_1^3+125y_1^3=5z^3\Leftrightarrow5x_1^3+25y_1^3=z^3\) (2)

Dễ thấy \(z^3⋮5\Rightarrow z⋮5\). Đặt \(z=5z_1\). Phương trình (2) tương đương với:

\(5x_1^3+25y_1^3=125z_1^3\Leftrightarrow x_1^3+5y_1^3=25z_1^3\)

\(\Rightarrow\text{Nếu (x;y;z) là nghiệm của (*)}\)

Thì \(\left(\frac{x}{5};\frac{y}{5};\frac{z}{5}\right)\) cũng là nghiệm của (*)

\(\Rightarrow\left(\frac{x}{5^k};\frac{y}{5^k};\frac{z}{5^k}\right)\text{ với }k\inℕ^∗\text{cũng là nghiệm của (*)}\)

Điều này chỉ xảy ra khi x = y = z = 0.

Mà nó không thỏa mãn đk x, y, z nguyên dương nên loại.

PT (*) vô nghiệm.