\(x^y+1=z\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

\(\text{vì:}x^y+1=z\Rightarrow z\text{ lẻ};x^y+1=z\Rightarrow x^y\text{ chẵn}\Rightarrow x=2\)

\(+,y=2\Rightarrow z=2^2+1=5\left(\text{thỏa mãn}\right)\)

\(+,y\ge3\Rightarrow y\text{ lẻ};\text{xét:}2^{2k+1}\left(k\inℕ^∗\right)=4^k.2\equiv1.2\equiv2\left(mod3\right)\Rightarrow2^y+1⋮3\text{ và:}2^y+1>3\left(\text{vô lí}\right)\)

\(\text{Vậy: }x=2;y=2;z=5\)

Dễ thấy : \(z>2\Rightarrow x\)lẻ \(\Rightarrow x\)chẵn \(\Rightarrow x=2\). Đưa bài toán về tìm 1 số tự nhiên \(y\)sao cho \(2^y+1\)là số nguyên tố 

Nếu \(y>2\Rightarrow y\)lẻ \(\Rightarrow2^y+1⋮3\Rightarrow\)False\(\Rightarrow y=2\Rightarrow z=5\)

Vậy x,y,z lần lượt là 2,2,5

17 tháng 9 2020

\(\left(x+y\right)^2+3x+y+1=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2>\left(x+y\right)^2\)

\(\left(x+y\right)^2+3x+y+1=\left(x+y+2\right)^2-x-3y-3=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2< \left(x+y+2\right)^2\)

Vậy \(z^2\)là số chính phương ở giữa 2 số chính phương khác là \(\left(x+y\right)^2\)và \(\left(x+y+2\right)^2\)

\(\Rightarrow z^2=\left(x+y+1\right)^2\Leftrightarrow\orbr{\begin{cases}x+y=1-z\left(1\right)\\x+y=z-1\left(2\right)\end{cases}}\)

Xét (1): \(x+y=1-z>0\Rightarrow z< 1\Leftrightarrow z=0\)Vì 0 không là số nguyên dương nên (1) vô nghiệm.

Xét (2): \(x+y=z-1\)lúc này pt có vô số nghiệm nguyên dương (x;y;z), x>0, y>0, z>1

7 tháng 9 2020

x2+y2+z2=x2y2

x2+y2+z2=0<=>x2y2=0

<=> \(\orbr{\begin{cases}x^2=0\\y^2=0\end{cases}}\)

Vậy nghiệm của PT =0