\(\left(2x+5y+1\right)\left(2^{\left|x\right|}+x^2+x+y\right)=105\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

Vì 105 là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|}+x^2+x+y\) phải là các số lẻ.

Từ \(2x+5y+1\) là số lẻ mà \(2x+1\) là số lẻ nên 5y là số chẵn suy ra y là số chẵn.

\(2^{\left|x\right|}+x^2+x+y\) là số lẻ mà \(x^2+x=x\left(x+1\right)\) là tích của hai số nguyên liên tiếp nên là số chẵn, y cũng là số chẵn nên \(2^{\left|x\right|}\) là số lẻ. Điều này chỉ xảy ra khi \(x=0\)

Thay x=0 vào phương trình đã cho, ta được:

\(\left(5y+1\right)\left(y+1\right)=105\)

\(\Leftrightarrow5y^2+6y-104=0\)

\(\Leftrightarrow5y^2-20y+26y-104=0\) 

\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)

\(\Leftrightarrow\left(5y+26\right)\left(y-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=-\frac{26}{5}\left(\text{loại}\right)\\y=4\left(TM\right)\end{cases}}\)

Vậy phương trình có nghiệm nguyên \(\left(x;y\right)=\left(0;4\right)\)

24 tháng 10 2016

Chứng minh rằng không tồn tại số nguyên n thỏa mãn $2014^{2014}+1\vdots n^{3}+2012n$ - Số học - Diễn đàn Toán học

14 tháng 5 2018

PT \(\Leftrightarrow\left(y^2-5y+6\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)

\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)

\(\Leftrightarrow\left(y-2\right)\left(x^2+yx-4x-y+3\right)=56\) 

\(\Leftrightarrow\left(y-2\right)\left(x-1\right)\left(x+y-3\right)=56\)

Ta nhận thấy x+y-3 là tổng của y-2, x-1

Đến đây ta xét lần lượt các trường hợp là ra

10 tháng 3 2018

Xét đen-ta thử đi bạn

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Lời giải:

a) Nếu $m=1$ thì hpt \(\Leftrightarrow \left\{\begin{matrix} 2(x+y)+|x|=4(1)\\ 5(x+y)-2|x|=1(2)\end{matrix}\right.\)

Lấy \((1).5-(2).2\) thu được:

\(9|x|=18\Rightarrow |x|=2\Rightarrow x=\pm 2\)

\(x+y=\frac{4-|x|}{2}=\frac{4-2}{2}=1\)

Với \(x=2\Rightarrow y=1-x=-1\)

Với \(x=-2\Rightarrow y=1-x=3\)

Vậy hpt có nghiệm \((x,y)=(2; -1); (-2;3)\)

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

6 tháng 1 2018

<=> [x.(x+3)] . [(x+1).(x+2)] = y^2

<=> (x^2+3x).(x^2+3x+2) = y^2

<=> (x^2+3x+1)^2-1 = y^2

<=> (x^2+3x+1)^2-y^2 = 1

<=> (x^2+3x+1-y).(x^2+3x+1+y) = 0

Đến đó bạn tự giải nha

Tk mk nha

12 tháng 10 2017

đặt x2=a;x2+y2=b;x2+y2+z2=c

pt \(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

đến đó thì dễ rồi

28 tháng 12 2017

Ta co :(x+y)^2=(x-1)(y-1)

X^2+2xy+y^2=xy-x-y+1

2x^2+2xy+2y^2+x+y-2=0

(x^2+2xy+y^2)+(x^2+2x+1)+(y^2+2y+1)=4

(x+y)^2+(x+1)^2+(y+1)^2=4

Do x;y€Z nen (x+y)^2;(x+1)^2;(y+1)^2 la cac so chinh phuong

Suy ra co 3 truong hop

°(x+y)^2=0;(x+1)^2=0;(y+1)^2=4

°(x+y)^2=0;(x+1)^2=4;(y+1)^2=0

°(x+y)^2=4;(x+1)^2=0;(y+1)^2=0

Sau do tu giai ra tim x;y