Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x3 +y3 +z3 =495 < 83 =>1 \(\le x,y,z\le7\)
Áp dụng đẳng thức x3+y3+z3 + 3xyz = (x+y+z)(x2+y2+z2-xy-yz-xz)
=>x3+y3+z3 = (x+y+z)(x2+y2+z2-xy-yz-xz) - 3xyz
<=> 495 = 15 (x2+y2+z2-xy-yz-xz) - 3xyz
<=> 165 = 5(x2+y2+z2-xy-yz-xz) - xyz
=>xyz chia hết cho 5 , vì \(\le x,y,z\le7\) và x,y,z có vai trò như nhau , ta giả sử x= 5 . Thay vào phương trình , ta suy ra
yz=21 và y+z=10 =>y=3 , z=7 hoặc z=3 , y=7 , do vai trò của x,y,z như nhau nên a tìm được (x,y,z) = (5,3,7) và các hoán vị
câu a)
nhân cả 3 phương trình
ta được
\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)
Vế trái là 1 số chính phương nên Vp cũng là số chính phương
6 không phải là số chính phương nên
\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6
lập bảng
đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa
câu b)
từ hpt =>5y+3=11z+7
<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R
y nguyên dương nên (11z+4)thuộc bội(5) và z_min
=> z=1
=> y=3
=> x =18 (t/m)
câu c)
qua pt (1) =>x=20-2y-3z
thay vao 2) <=> y+5z=23
y;z là nguyên dương mà 5z chia hêt cho 5
=> z={1;2;3;4}
=> y={18;13;8;3}
=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé
chọn x=2; y=3; z=4 (t/m)
Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com
a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0
=>x=y=z thay vào pt 2 ta dc x=y=z=3
c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0
Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)
=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...
d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)
\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)
<=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)
<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)
=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x
b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y
Sửa đề: \(\hept{\begin{cases}x+y+z=15\\x^3+y^3+z^3=495\end{cases}}\)
Không mất tính tổng quát ta giả sử: \(x\ge y\ge z>0\)
\(\Rightarrow15=x+y+z\ge3z\)
\(\Leftrightarrow0< z\le5\)
Với \(z=1\) thì ta có
\(\hept{\begin{cases}x+y=14\\x^3+y^3=494\end{cases}}\) hệ này vô nghiệm
Tương tự cho các trường hợp còn lại ta sẽ tìm được nghiệm.