Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vào câu hỏi tương tự:
https://olm.vn/hoi-dap/detail/240776023190.html
với mọi giá trị nguyên dương của y đều có thể tìm được mọi giá trị nguyên dương x
=> đề bài có vấn đề
Học tốt!!!!!!
Ta có \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\sqrt{200-\left(x+1\right)^2}\)
Để VT xác định thì \(\left(x+1\right)^2\le200\left(1\right)\)
Mà \(VP⋮2\) nên \(\sqrt{200-\left(x+1\right)^2}⋮2\Leftrightarrow200-\left(x+1\right)^2⋮4\)
Mà \(200⋮4\) nên \(\left(x+1\right)^2⋮4\left(2\right)\)
Mà \(\left(x+1\right)^2\) là số chính phương \(\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow x+1\in\left\{-2;0;2\right\}\Leftrightarrow x\in\left\{-3;-1;1\right\}\)
Từ đó tính y nha
Không biết là đúng không nữa cơ.
Ta có: \(4y^2=2+\sqrt{199-x^2-2x}=2+\sqrt{200-\left(x+1\right)^2}\le2+\sqrt{200}\)
\(\Rightarrow y^2\le\dfrac{1+5\sqrt{2}}{2}\Leftrightarrow-\sqrt{\dfrac{1+5\sqrt{2}}{2}}\le y\le\sqrt{\dfrac{1+5\sqrt{2}}{2}}\)
Mà y là số nguyên dương \(\Rightarrow1\le y\le2\Rightarrow y\in\left\{1;2\right\}\)
Tìm được y rồi thì tìm x nha.
Để cho gọn, đặt \(\left\{{}\begin{matrix}x^2=a\\y^2=b\end{matrix}\right.\)
\(\left(a+4b+28\right)^2-17a^2-17b^2=238b+833\)
\(\Leftrightarrow a^2+16b^2+784+8ab+56a+224b-17a^2-17b^2=238b+833\)
\(\Leftrightarrow16a^2+b^2+49-8ab-56a+14b=0\)
\(\Leftrightarrow\left(4a-b-7\right)^2=0\) \(\Leftrightarrow4a-b-7=0\Leftrightarrow4x^2-y^2-7=0\)
\(\Leftrightarrow\left(2x-y\right)\left(2x+y\right)=7\)
Do \(2x+y>2x-y\) với mọi x, y nguyên dương và \(2x+y>0\) với mọi x, y nguyên dương
\(\Rightarrow\left\{{}\begin{matrix}2x-y=1\\2x+y=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy pt có cặp nghiệm nguyên dương duy nhất (x;y)=(2;3)