Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{3}\Leftrightarrow\frac{y-x}{xy}=\frac{1}{3}\Leftrightarrow3y-3x=xy\Leftrightarrow3x+xy-3y=0\Leftrightarrow x\left(y+3\right)-3\left(y+3\right)=-9\Leftrightarrow\left(x-3\right)\left(y+3\right)=-9\)
Vì x,y nguyên nên x - 3 và y + 3 là ước của -9. Ta có bảng:
x-3 | -9 | -3 | -1 | 1 | 3 | 9 |
y+3 | 1 | 3 | 9 | -9 | -3 | -1 |
x | -6 (loại) | 0 (loại) | 2 (TM) | 4 (TM) | 6 (TM) | 12 (TM) |
y | -2 (loại) | 0 (loại) | 6 (TM) | -12 (loại) | -6 (loại) | -4 (loại) |
Vậy nghiệm nguyên dương của phương trình là (x;y) = (2;6).
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
Bài này dài lắm, mình học qua rùi cũng bỏ xó luôn ....... Ko biết còn quyển vở ko để xem lại
Câu a bạn giản ước đì rồi táchr a nhé
b) Ta có (x+y)2>=0
=>x2+y2+2xy>=0
=>x2+y2>= -2xy
=> x2+y2+x2+y2 >=x2+y2-2xy=(x-y)2=1
=>2x2+2y2>=1
=>2x2+2y2+2>=3
=> \(\frac{2x^2+2y^2+2}{4}>=\frac{3}{4}\)
=>\(\frac{x^2+y^2+1}{2}>=\frac{3}{4}\)
Mà (x-y)2=1 => x2+y2-2xy=1
=>x2+y2-1=2xy
=.\(xy=\frac{x^2+y^2-1}{2}\)
=> \(xy+1=\frac{x^2+y^2-1}{2}+1=\frac{x^2+y^2+1}{2}\)
=> xy+1>=3/4
Đặt \(\sqrt{x-2014}=a;\sqrt{y-2015}=b;\sqrt{z=2016}=c\)(với a,b,c>0). Khi đó pt trở thành:
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)\(\Leftrightarrow\left(\frac{1}{4}-\frac{1}{a}+\frac{1}{a^2}\right)+\left(\frac{1}{4}-\frac{1}{b}+\frac{1}{b^2}\right)+\left(\frac{1}{4}-\frac{1}{c}+\frac{1}{c^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{a}\right)^2+\left(\frac{1}{2}-\frac{1}{b}\right)^2+\left(\frac{1}{2}-\frac{1}{c}\right)^2=0\Leftrightarrow a=b=c=2\)
\(\Rightarrow x=2018;y=2019;z=2020\)
\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)
\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}-\left(\frac{1}{x-2014+y-2015+z-2016}\right)=\frac{3}{4}\)
\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}+0=\frac{3}{4}\)
\(\frac{\sqrt{x}-\sqrt{2014}}{x-2014}+\frac{\sqrt{y}-\sqrt{2015}}{y-2015}+\frac{\sqrt{z}-\sqrt{2016}}{z-2016}=\frac{3}{4}\)
\(x=2018,y=2019,z=2020\)
2
Do \(\overline{a56b}⋮45\)nên \(\overline{a56b}\) chia hết cho 5;9 vì \(\left(5,9\right)=1\)
\(TH1:b=5\Rightarrow\overline{a56b}=\overline{a565}\) chia hết cho 9
\(\Rightarrow a+5+6+5⋮9\Rightarrow a+16⋮9\)
Mà \(a\in\left\{1;2;3;4;5;6;7;8;9;0\right\}\)
\(\Rightarrow a=2\)
\(TH2:b=0\Rightarrow\overline{a56b}=\overline{a560}⋮9\)
\(\Rightarrow a+5+6+0⋮9\Rightarrow11⋮9\)
Lập luận tương tự ta có \(a=7\Rightarrow\overline{a56b}=7560\)
\(\Leftrightarrow6x+6y+1=xy\)
\(\Leftrightarrow xy-6x-6y+36=37\)
\(\Leftrightarrow x\left(y-6\right)-6\left(y-6\right)=37\)
\(\Leftrightarrow\left(x-6\right)\left(y-6\right)=37\)
Phương trình ước số cơ bản, bạn tự lập bảng