K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TD
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
V
1
P
1
GF
2
8 tháng 6 2020
Ta có: 2x2y - 1 = x2 + 3y
<=> 4x2y - 2 - 2x2 - 6y = 0
<=> 2x2(2y - 1) - 3(2y - 1) = 5
<=> (2x2 - 3)(2y - 1) = 5 = 1.5
Lập bảng:
2x2 - 3 | 1 | 5 |
2y - 1 | 5 | 1 |
x | \(\pm\sqrt{2}\)(loại) | 2 |
y | 1 |
Vậy nghiệm (x;y) của phương trình là (2; 1)
8 tháng 6 2020
\(2x^2y-1=x^2+3y\)
\(\Leftrightarrow4x^2y-2=2x^2+6y\)
\(\Leftrightarrow\left(2y-1\right)\left(2x^2-3\right)=5\)
Đến đây đơn giản rồi :))))
TT
2
Ta có: x+y >= y+1 (do x>=1)
=> (x+y)^4 >= (y+1)^4
=> 40y +1 = (x+y)^4 >= (y+1)^4 (1*)
Mặt khác nhận thấy (y+1)^4 > 40y +1 nếu y >=3 (2*)
{ Do (y+1)^4 = y^4 + 4y^3 + 6y^2 + 4y +1 >= 27y + 36y + 18y +4y +1 >40y+1
Thay y^4 = y^3.y >= 3^3.y =27y; 4y^3 = 4.y^2.y >= 4.9.y =36y ....}
Từ (1*,2*)
=> y=1, hay y=2
Thay vao ta có nghiệm x=1; y=2 là so duy nhất