Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này làm thế này:
Do vai trò của x,y,z là như nhau nen giả sử z ≥ y ≥ x ≥ 1
Ta sẽ thử trực tiếp một vài trường hợp:
- Nếu x = 1 thì 1/y + 1/z = 0 ( vô nghiệm)
-Nếu x = 2 thì 1/y + 1/z = 1/2 <=> 2y + 2z = yz <=> (y - 2)(z - 2) = 4
Mà :0 ≤ y - 2 ≤ z - 2 và (y- 2), (z - 2) phải là ước của 4
Do đó ta có các trường hợp:
{ y - 2 = 1```````{ y = 3
{ z - 2 = 4 <=>{ z = 6
{ y- 2 = 2````````{ y = 4
{ z - 2 = 2 <=>{ z = 4
- Nếu x = 3 thì 1/y + 1/z = 2/3
+ Nếu y = 3 thì z = 3
+ Nều y ≥ 4 thì 1/y + 1/z ≤ 1/4 + 1/4 = 1/2 < 1/3
=> phương trình vô nghiệm
♥ Nếu x = 4 thì 1/x + 1/y + 1/z ≤ 1/4 + 1/4 + 1/4 = 3/4 < 1
=>pt vô nghiệm
Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)
from giả thiết => x+y+z=xyz
biến đổi như sau:\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}=\dfrac{x}{\sqrt{yz+x^2yz}}=\dfrac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
=\(\sqrt{\dfrac{x^2}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\)
Theo đề thì:\(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{2}{z}=0\)
\(\Leftrightarrow xz+yz-2xy=0\)
Cũng từ \(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{2}{z}=0\)
\(\Leftrightarrow\dfrac{2}{z}=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\)
\(\Leftrightarrow z\le\sqrt{xy}\)
\(\Leftrightarrow z^2\le xy\)
Quay lại bài toán ta có:
\(T=\dfrac{x+z}{2x-z}+\dfrac{z+y}{2y-z}=\dfrac{2z^2-6xy-\left(xz+yz-2xy\right)}{-z^2+2\left(xz+yz-2xy\right)}\)
\(=\dfrac{6xy-2z^2}{z^2}\ge\dfrac{6xy-2xy}{xy}=4\)
Vậy GTNN là T = 4 khi x = y = z = 1
2) \(\sum\dfrac{x}{x^2-yz+2013}=\sum\dfrac{x^2}{x^3-xyz+2013x}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\dfrac{1}{x+y+z}\left(đpcm\right)\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{y^2\left(x+1\right)}{y^2+1}\ge x+1-\dfrac{y\left(x+1\right)}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{z\left(y+1\right)}{2};\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{x\left(z+1\right)}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(Q\ge\left(x+y+z+3\right)-\dfrac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)
\(=6-\dfrac{xy+yz+xz+x+y+z}{2}\)
\(\ge6-\dfrac{\dfrac{\left(x+y+z\right)^2}{3}+3}{2}=6-3=3\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Không mất tính tổng quát giả sử: \(x\ge y\ge z\ge t>0\)
\(\Rightarrow1=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{1}{t^2}\le\dfrac{4}{t^2}\)
\(\Leftrightarrow t^2\le4\)
\(\Leftrightarrow0< t\le2\)
\(\Rightarrow t=\left\{1,2\right\}\)
Cứ vậy sẽ giải được bài toán
Wlog x\ge y\ge z\ge t