\(x^3y^3-x^3=91\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

pt : x^3.y^3+x^3 = 91

<=> x^3.(y^3-1) = 91

Đến đó bạn dùng ước bội mà giải nha

Tk mk

17 tháng 6 2019

Em chỉ giải 1 ví dụ thôi ạ , mấy cái còn lại giải theo cách tương tự

\(x^4+4y^4=2z^4\)

Dễ thấy \(x^4\)là số chẵn nên x là số chẵn

Đặt \(x=2a_1\left(a_1\inℕ^∗\right)\)

\(\Rightarrow\left(2a_1\right)^4+4y^4=2z^4\)

\(\Leftrightarrow16a_1^4+4y^4=2z^4\)

\(\Leftrightarrow8a_1^4+2y^4=z^4\)

Dễ thấy z4 chẵn nên z chẵn

Đặt \(z=2c_1\left(c\inℕ^∗\right)\)

Thì khi đó \(8a_1^4+2y^4=\left(2c_1\right)^4\)

\(\Leftrightarrow8a^4_1+2y^4=16c_1^4\)

\(\Leftrightarrow4a_1^4+y^4=8c_1^4\)

Dễ thấy y4 chẵn nên y chẵn

Đặt \(y=2b_1\left(b\inℕ^∗\right)\)

Khi đó pt \(4a_1^4+\left(2b_1\right)^4=8c_1^4\)

\(\Leftrightarrow4a^4_1+16b_1^4=8c_1^4\)

\(\Leftrightarrow a_1^4+4b_1^4=2c_1^4\)

Như vậy thì bộ số \(\left(a_1;b_1;c_1\right)\)là 1 nghiệm của pt đã cho

Chứng minh tương tự như vậy ta rút ra kết luận là x ; y ; z luôn chia hết cho \(2^n\left(n\in N\right)\)

Điều này chỉ đúng với x = y = z = 0

Mà pt đã cho cần có nghiệm nguyên dương nên x = y = z = 0 (loại )
Vậy pt vô nghiệm 

17 tháng 6 2019

VD 1 em có giải lúc trước trong trang Phương trình nghiệm nguyên rồi mà! 

VD2: Kí hiệu pt trên là (*)

Dễ thấy \(x^3⋮5\) nên x chia hết cho 5. Đặt \(x=5x_1\)

Phương trình trở thành: \(125x_1^3+5y^3=25z^3\Leftrightarrow25x_1^3+y^3=5z^3\) (1)

Dễ thấy \(y^3⋮5\Rightarrow y⋮5\) . Đặt \(y=5y_1\) . Phương trình (1) tương đương với:

\(25x_1^3+125y_1^3=5z^3\Leftrightarrow5x_1^3+25y_1^3=z^3\) (2)

Dễ thấy \(z^3⋮5\Rightarrow z⋮5\). Đặt \(z=5z_1\). Phương trình (2) tương đương với:

\(5x_1^3+25y_1^3=125z_1^3\Leftrightarrow x_1^3+5y_1^3=25z_1^3\)

\(\Rightarrow\text{Nếu (x;y;z) là nghiệm của (*)}\)

Thì \(\left(\frac{x}{5};\frac{y}{5};\frac{z}{5}\right)\) cũng là nghiệm của (*)

\(\Rightarrow\left(\frac{x}{5^k};\frac{y}{5^k};\frac{z}{5^k}\right)\text{ với }k\inℕ^∗\text{cũng là nghiệm của (*)}\)

Điều này chỉ xảy ra khi x = y = z = 0.

Mà nó không thỏa mãn đk x, y, z nguyên dương nên loại.

PT (*) vô nghiệm.

17 tháng 3 2018

  2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0 

<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0 

<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0 

<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0 

<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8 

<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8 

<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8 

<=> 4(x + y + 4)( - 4x - 2y - 2) = 8 

<=> (x + y + 4)( 2x + y + 1) = -1 

=> 
{x + y + 4 = -1 
{2x + y + 1 = 1 
=> x = 2 và y = - 4 

{x + y + 4 = 1 
{2x + y + 1 = - 1 
=> x = - 2 và y = 2 

vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)