Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT $\Leftrightarrow x^2+(x^2y^2-2xy+1)=5$
$\Leftrightarrow x^2+(xy-1)^2=5$
$\Rightarrow x^2=5-(xy-1)^2\leq 5$
Mà $x$ là stn nên $x=0;1;2$
Thay từng giá trị của $x$ vô pt ban đầu ta có $(x,y)=(1,3), (1,-1), (-1, -3), (-1, 1), (2, 0), (-2,0), (2, 1), (-2, -1)$
Pt có 2 nghiệm khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-4m\left(m-1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow0< m\le\dfrac{4}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=\dfrac{m-1}{m}=1-\dfrac{1}{m}\end{matrix}\right.\)
\(A=x_1^2+x_2^2-6x_1x_2=\left(x_1+x_2\right)^2-8x_1x_2\)
\(A=1-8\left(1-\dfrac{1}{m}\right)=\dfrac{8}{m}-7\)
Do \(0< m\le\dfrac{4}{3}\Rightarrow\dfrac{8}{m}\ge\dfrac{8}{\dfrac{4}{3}}=6\)
\(\Rightarrow A\ge6-7=-1\)
\(A_{min}=-1\) khi \(m=\dfrac{4}{3}\)
câu a chắc bạn làm được. delta >= 0 á
b.bạn dùng viet tính ra x1+x2, x1.x2 rồi thay vào cái biểu thức. bạn biến đổi làm sau cho cái biểu thức đó thành một hằng đẳng thức (1, 2) cộng với 1 số nguyên. cái số đó chính là GTLN
\(\Delta'=m-1\ge0\Rightarrow m\ge1\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
\(A=x_1x_2-\left(x_1+x_2\right)\)
\(=m^2-3m+1\)
Biểu thức này ko có max, chỉ có min, chắc bạn ghi ko đúng đề
Ta có \(4xy^2-3x-3y^2=1\Leftrightarrow y^2\left(4x-3\right)=3x+1\Leftrightarrow y^2=\frac{3x+1}{4x-3}\inℤ\left(do4x-3\ne0\right)\)
\(\Rightarrow3x+1⋮4x-3\Rightarrow4\left(3x+1\right)⋮4x-3\Leftrightarrow3\left(4x-3\right)+13⋮4x-3\Leftrightarrow13⋮4x-3\)
\(\Rightarrow4x-3\inƯ\left(13\right)=\left\{\pm1,\pm13\right\}\Leftrightarrow4x\in\left\{-10,2,4,16\right\}\Rightarrow x\in\left\{1,4\right\}\)(do x thuộc Z)
Với \(x=1\Rightarrow y^2=4\Rightarrow y=\pm2\left(tm\right)\)
Với \(x=4\Rightarrow y^2=1\Rightarrow y=\pm1\left(tm\right)\)
4xy²−3x−3y²=14xy²−3x−3y²=1
⇔ y²(4x−3)−0,75(4x−3)=3,25y²(4x−3)−0,75(4x−3)=3,25
⇔ (4x−3)(y²−0,75)=3,25(4x−3)(y²−0,75)=3,25
⇔ (4x−3).(4y²−3)=13=1.13=13.1=(−1).(−13)=(−13).(−1)(4x−3).(4y²−3)=13=1.13=13.1=(−1).(−13)=(−13).(−1)
Ta có bảng giá trị
4x-3 | 1 | 13 | -1 | -13 |
x | 1 | 4 | / | / |
4y²-3 | 13 | 1 | -13 | -1 |
y | ±2 | ±1 | / | / |
Vậy ...
Câu trả lời hay nhất: x² - 4x +y - 6√(y) + 13 = 0
<=> (x^2 - 4x +4) + (√(y)^2 - 6√(y) + 9) = 0
<=> (x-2)^2 + (√(y) -3)^2 = 0
VT >=0 dấu = xảy ra <=> x = 2 ; y = 9
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
<=> ((xy²)² - 16xy³ + 64y²) + (4y^2 - 4xy + x^2) = 0
<=> (xy² - 8y)^2 + (2y - x)^2 = 0
VT >=0 => dấu = <=> xy² - 8y = 0 và 2y - x = 0
<=> y = 0 ; x = 0 hoặc x = 4 ; y = 2 hoặc x = -4 ;y = -2
c/
x² - x²y - y + 8x + 7 = 0
<=> x²(1-y) + 8x - y + 7 = 0
xét delta' = 4^2 - (1-y)(7-y) = 16 - 7 -y^2 + 8y = -(y^2 -8y + 16) +25 = 25 - (y-4)^2
để pt có nghiệm thì delta' >=0
<=> (y-4)^2 <=25
<=> -1<= y <=9
=> max y = 9
=> x = 3/2 hoặc x = -1/2
3/
x² - 6x + 1 =0. nhân cả 2 vế với x^(n-1) ta được
x^(n+1) - 6x^n + x^(n-1) = 0
với S(n) = x1ⁿ +x2ⁿ ta có:
S(n+1) - 6S(n) + S(n-1) = 0
<=> S(n+1) = 6S(n) - S(n-1)
với S(1) = 6
S(2) = 22
=> S(3) nguyên
=> S(4) nguyên
=> S(n) nguyên (do biểu thức truy hồi S(n+1) = 6S(n) - S(n-1))
ta có:
S(1) không chia hết cho 5
S(2) ..............................
=> S(3) = 6S(2) - S(1) = 6.(22 -1) = 6.21 không chia hết cho 5
S(n) và S(n-1) ko chia hết cho 5 =>
S(n+1) = S(n) + S(n-1) ko chia hết cho 5