Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thêm xy vào 2 vế:
\(x^2+2xy+y^2=x^2y^2+xy\)(1)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
Ta thấy xy và xy+1 là 2 số nguyên liên tiếp, có tích là 1 số chính phương nên tồn tại 1 số bằng 0
xét xy=0, từ (1)=> \(x^2+y^2=0\Rightarrow x=y=0\)
xét xy+1=0=> xy=-1, => \(\left(x;y\right)=\orbr{\begin{cases}\left(1;-1\right)\\\left(-1;1\right)\end{cases}}\)
vậy nghiệm nguyên (x;y) của PT là: (0;0); (1;-1); (-1;1)
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
=> 5x2 + 5xy + 5y2 = 7x + 14y
=> 5x2 + 5xy - 7x + 5y2 - 14y = 0
=> 5x2 + (5y -7).x + (5y2 - 14y) = 0 (*)
Tính \(\Delta\) = (5y - 7)2 - 4.5.(5y2 - 14y) = -75y2 + 210y + 49
Để x nguyên thì \(\Delta\) là số chính phương <=> -75y2 + 210y + 49 = k2 ( với k nguyên)
=> - 3. (25y2 - 2.5y.7 + 49) + 196 = k2
=> -3.(5y - 7)2 + 196 = k2
=> 3.(5y - 7)2 + k2 = 196 => 3. (5y-7)2 \(\le\) 196 => (5y - 7)2 \(\le\) 66 =>-8 \(\le\) 5y - 7 \(\le\) 8
=> -1/5 \(\le\) y \(\le\) 3
y nguyên nên y có thể bằng 0; 1;2;3
Với tưng giá trị của y ta thay vào (*) => x
Các giá trị x; y nguyên tìm được là các giá trị thỏa mãn yêu cầu