Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
3/ \(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+2\left(\frac{16}{ab}+ab\right)+\frac{2}{ab}\ge\)
\(\ge\frac{2.4}{\left(a+b\right)^2}+4\sqrt{\frac{16}{ab}.ab}+\frac{2.4}{\left(a+b\right)^2}\ge\frac{8}{4^2}+4\sqrt{16}+\frac{8}{4^2}=17\)
Dấu "=" xảy ra khi a = b = 2
Vậy Min P = 17 <=> a = b = 2
\(\frac{x+y}{x^2-xy+y^2}=\frac{3}{7}\)
\(\Leftrightarrow3x^2-3xy+3y^2=7x+7y\)
\(\Leftrightarrow3x^2+\left(-3y-7\right)x+3y^2-7y=0\)
Để phương trình theo nghiệm x có nghiệm thì:
\(\Delta=\left(-3y-7\right)^2-4.3.\left(3y^2-7y\right)\ge0\)
\(\Leftrightarrow0\le y\le5\)
Thế lần lược các giá trị y cái nào làm cho x nguyên thì nhận.
Phương trình đã cho tương đương với: 2x2 + 2y2 - 2xy-2x-2y=0 (=) (x-y)2+(x-1)2+(y-1)2=2 (1)
Không mất tính tổng quát giả sử x>= y. Do x;y nguyên nên x-y=0 hoặc x-y=1
*) Xét x-y=0 =) (1) (=) 2(x-1)2=2 (=) x=y=2 (t/m)
*) Xét x-y=1 (=) x-1=y =) (1) (=) 1+y2+(y2-2y+1)=2 (=) 2y2-2y=0 (=) y=0;x=1 hoặc y=1;x=2
Vậy các cặp nghiệm (x;y) của phương trình là (2;2);(0;1);(1;0);(1;2);(2;1)