\(y^2+y=x^4+x^3+x^2+x\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

Ta đưa về dạng: \(\left(2y+1\right)^2=\left(2x^2+x\right)^2+\left(3x+1\right)\left(x+1\right)\)

\(=\left(2x^2+x+1\right)^2-x\left(x-2\right)\)

Khi:\(\left(3x+1\right)\left(x+1\right)\)dương thì: \(\left(2y+1\right)^2>\left(2x^2+x\right)^2\)

Khi: \(x\left(x-2\right)\) dương thì: \(\left(2y+1\right)^2< \left(2x^2+x+1\right)^2\)

\(\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}\)\(\left(2x^2+x\right)^2< 4x^4+4x^3+4x^2+4x+1< \left(2x^2+x+1\right)^2\)

Mà: \(2x^2+x\) và \(2x^2+x+1\)là hai số liên tiếp nên trường hợp này không có nghiệm nguyên.

Vậy muốn có nghiệm nguyên thì: \(-1\le x\le2\Rightarrow x=0;1;1;2\)

Vậy pt có nghiệm nguyên \(\left(x,y\right)=\left\{\left(-1;0\right);\left(-1;-1\right);\left(0;0\right);\left(0;-1\right);\left(2;5\right);\left(2;-6\right)\right\}\)

\(\Leftrightarrow y^2+y=\left(x^4+x^3\right)+\left(x^2+x\right)\)

\(\Leftrightarrow y\left(y+1\right)=x^3\left(x+1\right)+x\left(x+1\right)\)

\(\Leftrightarrow y\left(y+1\right)=\left(x^3+x\right)\left(x+1\right)\)

\(\Leftrightarrow y\left(y+1\right)=\left[x\left(x+1\right)\right]^2\)

Mà (y,y+1)=1

\(\Rightarrow y\in\left\{0;-1\right\}\)

\(\Rightarrow\left[x\left(x+1\right)\right]^2=0\Rightarrow x\in\left\{-1;0\right\}\)

Vậy\(\left(x,y\right)\in\left\{\left(0;0\right),\left(-1;0\right),\left(-1;-1\right),\left(0;-1\right)\right\}\)

mk làm hơi tắt sorry

24 tháng 1 2020

Phương trình được viết lại:

\(4x^2+4x+1=4y^4+4y^3+y^2+3y^2+4y+1\)

\(\Leftrightarrow4x^2+4x+1=\left(2y^2+y\right)^2+3y^2+4y+1\)

\(\Leftrightarrow\left(2x+1\right)^2=\left(2y^2+y+1\right)^2+2y-y^2\)

Nếu: \(y=-1\)và \(2y-y^2< 0\Rightarrow3y^2+4y+1>0\)

\(\Rightarrow\left(2y^2+y\right)^2< \left(2x+1\right)^2< \left(2y^2+y+1\right)^2\)

Ta thấy vô lí vì \(\left(2y^2+y\right)^2;\left(2y^2+y+1\right)\)là 2 số chính phương liên tiếp.

Vì thế nên \(y\)nhận 1 trong những giá trị: \(-1;0;1;2\)

  • \(y=-1\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
  • \(y=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
  • \(y=1\Rightarrow\)Không tồn tại \(x\)
  • \(y=2\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)

Vậy các nghiệm nguyên của phương trình là: \(\left(x,y\right)\in\left\{\left(0;-1\right),\left(-1;-1\right);\left(0;0\right);\left(-1;0\right);\left(5;2\right);\left(-6;2\right)\right\}\)

9 tháng 1 2016

a)Với y=1 ta có hpt:

\(\int^{2x+3=3+m}_{x+2=m}\Leftrightarrow\int^{2x=m}_{x+2=2x}\Leftrightarrow\int^{2.2=m}_{x=2}\Leftrightarrow\int^{m=4}_{x=2}\)

Vậy nghiệm của hpt là (2;1) khi m=4

b)đợi suy nghĩ

 

22 tháng 8 2019

1.

a.\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0\left(\forall m\in R\right)\)

b.Gia su 2 nghiem cua PT la \(x_1,x_2\left(x_1>x_2\right)\)

Theo de bai ta co;\(x_1-x_2=17\)

Tu cau a ta co:\(x_1=\frac{-4m-1+\sqrt{16m^2+33}}{2}\) \(x_2=\frac{-4m-1-\sqrt{16m^2+33}}{2}\)

\(\Rightarrow\frac{-4m-1+\sqrt{16m^2+33}}{2}-\frac{-4m-1-\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\frac{2\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow16m^2+33=289\)

\(\Leftrightarrow m=4\)

22 tháng 8 2019

2.

a.\(\Delta'=\left(m-1\right)^2-\left(m+2\right)\left(3-m\right)=2m^2-3m-5=\left(m+1\right)\left(2m-5\right)>0\)

TH1:\(\hept{\begin{cases}m+1>0\\2m-5>0\end{cases}\Leftrightarrow m>\frac{5}{2}}\)

TH2:\(\hept{\begin{cases}m+1< 0\\2m-5< 0\end{cases}\Leftrightarrow m< -1}\)

Xet TH1:\(x_1=\frac{-m+1+\sqrt{2m^2-3m-5}}{m+2}\) \(x_2=\frac{-m+1-\sqrt{2m^2-3m-5}}{m+2}\)

Ta co:\(x^2_1+x^2_2=x_1+x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=x_1+x_2\)

\(\Leftrightarrow\left(\frac{-2m+2}{m+2}\right)^2-\frac{-m^2+5m+6}{\left(m+2\right)^2}=\frac{-2m+2}{m+2}\)

\(\Leftrightarrow\frac{5m^2-13m-2}{\left(m+2\right)^2}=\frac{-2m^2-2m+4}{\left(m+2\right)^2}\)

\(\Rightarrow7m^2-11m-6=0\)

\(\Delta_m=121+168=289>0\)

\(\Rightarrow\hept{\begin{cases}m_1=2\left(l\right)\\m_2=-\frac{3}{7}\left(l\right)\end{cases}}\) 

TH2;Tuong tu 

Vay khong co gia tri nao cua m de PT co 2 nghiem thoa man \(x^2_1+x^2_2=x_1+x_2\)

11 tháng 9 2020

Hệ \(\hept{\begin{cases}x^3+y^3+z^3=3\\x+y+z=3\end{cases}}\)

Ta có : x + y + z = 3

<=> x + y = 3 - z

<=> (x + y)^3 = (3 - z)^3

<=> x^3 + 3x^2y + 3xy^2 + y^3 = 27 - 27z + 9z^2 - z^3

<=> (x^3 + y^3 + z^3) + 3xy(x + y) + 9z(3 - z) = 27

<=> 3 + 3xy(3 - z) + 9z(3 - z) = 27

<=> 3xy(3 - z) + 9z(3 - z) = 24

<=> (3 - z)(xy + 3z) = 8 (*)

Vì x,y,z nguyên nên (*) tương tương với các hệ sau:

{ 3 - z = 8 => z = - 5 => x + y = 3 - z = 8

{ xy + 3z = 1 => xy = 1 - 3z = 16

=> x, y là nghiệm của pt: t^2 - 8t +16 = 0 <=> (t - 4)^2 = 0 <=> x = y = 4

{ 3 - z = - 8 => z = 11 => x + y = 3 - z = -8

{ xy + 3z = -1 => xy = - 1 - 3z = - 34

=> x, y là nghiệm của pt: t^2 + 8t - 34 = 0 => loại vì x, y không nguyên

{ 3 - z = 4 => z = -1 => x + y = 3 - z = 4

{ xy + 3z = 2 => xy = 2 - 3z = 5

=> x, y là nghiệm của pt: t^2 - 4t + 5 = 0 => vô nghiệm

{ 3 - z = - 4 => z = 7 => x + y = 3 - z = - 4

{ xy + 3z = - 2 => xy = - 2 - 3z = -23

=> x, y là nghiệm của pt: t^2 + 4t - 23 = 0 => loại vì x, y không nguyên

{ 3 - z = 2 => z = 1 => x + y = 3 - z = 2

{ xy + 3z = 4 => xy = 4 - 3z = 1

=> x, y là nghiệm của pt: t^2 - 2t +1 = 0 => x = y = 1

{ 3 - z = - 2 => z = 5 => x + y = 3 - z = - 2

{ xy + 3z = - 4 => xy = - 4 - 3z = - 19

=> x, y là nghiệm của pt: t^2 + 2t -19 = 0 => loại vì x, y không nguyên

{ 3 - z = 1 => z = 2 => x + y = 3 - z = 1

{ xy + 3z = 8 => xy = 8 - 3z = 2

=> x, y là nghiệm của pt: t^2 - t + 2 = 0 => vô nghiệm

{ 3 - z = - 1 => z = 4 => x + y = 3 - z = -1

{ xy + 3z = - 8 => xy = - 8 - 3z = - 20

=> x, y là nghiệm của pt: t^2 + t - 20 = 0 => x = - 5; y = 4 hoặc x = 4; y = -5

Kết luận: Vậy tập nghiệm nguyên của hệ là S ={(x,y,z)} = {(1,1,1);(4,4,-5);(-5,4,4);(4,-5,4)}

Vì \(\left(m-1\right)x+y=2\)\(\Rightarrow y=2-\left(m-1\right)x\) ( 1 )

Thay vào PT dưới có : \(mx+2-\left(m-1\right)x=m+1\)

\(\Rightarrow x+1=m\)( pt này luôn có nghiệm duy nhất )

\(\Rightarrow x=m-1\), thay vào ( 1 ) ta có :

\(y=2-\left(m-1\right)^2\)

Ta có : \(x+y=-4\) \(\Leftrightarrow m-1+2-\left(m-1\right)^2=-4\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)-6=0\)

\(\left[\left(m-1\right)^2-3\left(m-1\right)\right]+\left[2.\left(m-1\right)-6\right]=0\)

\(\Rightarrow\left[\left(m-1\right)-3\right].\left[\left(m-1\right)+2\right]=0\)

\(\Rightarrow\hept{\begin{cases}m-1=3\\m-1=-2\end{cases}}\Rightarrow\hept{\begin{cases}m=4\\m=-1\end{cases}}\)