K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

<=> (2y)2 = 4x4 + 4x3 + 4x2 + 4x + 4 (*)

Đặt P(x) = 4x4 + 4x3 + 4x2 + 4x + 4

1./ 3x2 + 4x + 4 = 3[x2 + 2x*2/3 +(2/3)2] +4 - 4/3 = (x + 2/3)2 + 8/3 > 0 với mọi x

=> P(x) > Q(x) = 4x4 + 4x3 + 4x2 + 4x + 4 - (3x2 + 4x + 4) = 4x4 + 4x2 + x2 = (2x2 + x)2 (1)

2./ 5x2 >= 0 với mọi x

=> P(x) <= 4x4 + 4x3 + 4x2 + 4x + 4 + 5x2 = 4x4 + 4x3 + 9x2 + 4x + 4 = 4x4 + x2 + 4 + 2.2x2.x + 2.2x2.2 + 2.x.2 = (2x + x + 2)2 (2)

  • Với x = 0 thì PT có 2 nghiệm là (x=0;y=1) và (x=0;y=-1)
  • Với x khác 0 thì: P(x) < (2x + x + 2)2 với mọi x (2)

Từ (1) và (2) suy ra: (2x2 + x)2 < P(x) = (2y)2 < (2x + x + 2)2

Do đó số chính phương (2y)2 bị kẹp giữa 2 số chính phương chẵn (hoặc lẻ) liên tiếp. Nên 2|y| chỉ có thể là số kẹp giữa |2x2 + x| và |2x2 + x + 2| => 2|y| = |2x2 + x + 1| Khi đó (2y)= (2x2 + x + 1)= 4x4 + 4x3 + 5x2 + 2x + 1

Thay vào (*) => 4x4 + 4x3 + 5x2 + 2x + 1 = 4x4 + 4x3 + 4x2 + 4x + 4

=> x2 - 2x - 3 = 0 => (x + 1)(x - 3) = 0.

Với x = -1 thì y = 1 hoặc -1

Với x = 3 thì y = 11 hoặc -11.

3./ Vậy PT có 6 cặp nghiệm nguyên là: (0;1); (0;-1); (-1;1); (-1;-1); (3;11); (3;-11).

Chọn B

2 tháng 7 2020

Nhân x+1 vs x+4

x+2 vs x+3

23 tháng 6 2020

hep you 

12 tháng 5 2021

Ai giúp mik vs ạ

 

NA
Ngoc Anh Thai
Giáo viên
12 tháng 5 2021

Đặt \(t=x^2\left(t\ge0\right)\)

Khi đó phương trình ban đầu tương đương với pt\(t^2-2\left(m+2\right)t+m^2-2m+3=0\) (*) 

Để pt ban đầu có 4 nghiệm phân biệt thì pt (*) có hai nghiệm dương phân biệt ⇔ 

\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)^2-m^2+2m-3>0\\2\left(m+2\right)>0\\m^2-2m+3>0\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}6m+1>0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{6}\\m>-2\end{matrix}\right.\)

⇔ \(m>-\dfrac{1}{6}.\)

Giả sử (*) có hai nghiệm là t1, t2. Khi đó theo Viet ta có t1.t2 = m2 - 2m + 3.

Ta có: x1.x2.x3.x4 = t1.t2 = m2 - 2m +3.

Ta có E = m2 - 2m + 3 = (m - 1)2 + 2 ≥ 2.

Min E = 2. Dấu bằng xảy ra khi m = 1.

 

15 tháng 1 2022

Ta có x+ x+ 1 = y2

Lại có x+ 2x+ 1 ≥ x+ x+ 1 hay (x2 + 1)2 ≥ x+ x+ 1

=> (x2 + 1)2 ≥ y(1)

Lại có x+ x+ 1 > x4 => y2 > x4 (2)

Từ (1) và (2), ta có x4 < y2 ≤ (x2 + 1)2

<=> y2 = (x2 + 1)2 = x+ 2x+ 1

Mà x+ x+ 1 = y=> x+ 2x+ 1 = x+ x+ 1

<=> x2 = 0 <=> x = 0

Thay vào, ta có 1 = y<=> y ∈ {-1,1}

Vậy ...

 

17 tháng 6 2016
a) ax^2 + bx + c = 0 Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. ∆ > 0 => b^2 - 4ac > 0 x1 + x2 = -b/a > 0 => b và a trái dấu x1.x2 = c/a > 0 => c và a cùng dấu Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 ∆ = b^2 - 4ac >0 x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 => phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. x1 + x2 ≥ 2√( x1.x2 ) x3 + x4 ≥ 2√( x3x4 ) => x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) Tiếp tục côsi cho 2 số không âm ta có √( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) Theo a ta có x1.x2 = c/a x3.x4 = a/c => ( x1.x2 )( x3.x4 ) = 1 => 2√[√( x1.x2 )( x3.x4 ) ] = 2 Từ (#) và (##) ta có x1 + x2 + x3 + x4 ≥ 4