Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên
\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)
từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được
\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)
=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)
=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)
zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)
=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)
mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)
zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0
zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)
zới y=2 , m=1 thì ta tính đc x=1
zới y=3 , m=1 thì ta tính đc x=-1
zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)
1/ Ta chứng minh với \(x>6\)thì \(10.2^x>13x^2\) cái này dùng quy nạp chứng minh được:
Từ đây ta xét với \(x>6\)thì
\(\Rightarrow\hept{\begin{cases}10.2^6-13x^2>0\\10-3x< 0\end{cases}}\)
\(\Rightarrow\)Phương trình vô nghiệm.
Giờ chỉ cần kiểm tra \(x=1;2;3;4;5;6\) xem cái nào thỏa mãn nữa là xong.
2/ \(3^x+1=\left(y+1\right)^2\)
\(\Leftrightarrow3^x=y\left(y+2\right)\)
Với \(y=1\)
\(\Rightarrow x=1\)
Với \(y>1\)
Với \(y⋮3\)\(\Rightarrow y+2⋮̸3\)
Với \(y+2⋮3\)\(\Rightarrow y⋮̸3\)
Vậy \(x=1,y=1\)
\(PT\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)\)
\(=196-3\left(5y-7\right)^2\)
Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow\left(5y-7\right)^2\le65\)
Mặt khác \(5y-7\equiv3\left(mod5\right)\)
\(\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)
do đó \(\left(5y-7\right)^2\in\left\{4,9,14,19,24,29,34,39,44,49,54,59,64\right\}\)
mà (5y-7)2 là số chính phưng nên \(\left(5y-7\right)^2\in\left\{4,9,64\right\}\)
Từ đó tính ra
\(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
\(\Leftrightarrow5x^2+5xy+5y^2-7x-14y=0\)
\(\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Rightarrow\Delta_x=\left(5y-7\right)^2-4\cdot5\cdot\left(5y^2-14y\right)\)
\(=-75y^2+210y+49\)
\(=196-3\left(25y^2-2\cdot5y\cdot7+79\right)\ge0\)
\(=196-3\left(5y-7\right)^2\ge0\)
Để phương trình có nghiệm nguyên thì \(\Delta_x\ge0\Leftrightarrow\left(5y-7\right)^2\le65\)
Nhận thấy \(5y-7\equiv3\left(mod5\right)\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)
Do đó \(\left(5y-7\right)^2\in\left\{4;9;14;19;24;29;34;39;44;49;54;59\right\}\)
Mà \(\left(5y-7\right)^2\)chinh phương nên \(\left(5y-7\right)^2\in\left\{4;9;49\right\}\)
Đến đây ta xét trường hợp là ra.
Ta có
\(1\left(x+1\right)\left(x+2\right)\left(x+8\right)\left(x+9\right)=y^2\)
\(\Leftrightarrow1\left(x^2+10x+9\right)\left(x^2+10x+16\right)=y^2\)
Đặt x2 + 10x + 16 = a thì pt thành
a(a + 7) = y2
<=> 4a2 + 28a = 4y2
<=> (4a2 + 28a + 49) - 4y2 = 49
<=> (2a + 7)2 - 4y2 = 49
<=> (2a + 7 - 2y)(2a + 7 + 2y) = 49
<=> (2a + 7 - 2y, 2a + 7 + 2y) = (1, 49; 49, 1; 7, 7; - 1,- 49; - 49, - 1; - 7, - 7)
Thế vào rồi giải sẽ tìm được x,y
\(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
\(\Leftrightarrow y\left[2y^2+\left(x^2-3x\right)y+3x^2+x\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\2y^2+\left(x^2-3x\right)y+3x^2+x=0\end{cases}}\)
Với \(y=0\)thì x nguyên tùy ý.
Với \(2y^2+\left(x^2-3x\right)y+3x^2+x=0\)
Ta có: \(\Delta=\left(x^2-3x\right)^2-4.2.\left(3x^2+x\right)=\left(x-8\right)x\left(x+1\right)^2\)
Với \(x=-1\) thì \(\Rightarrow y=-1\)
Với \(x\ne-1\) để y nguyên thì \(\Delta\) phải là số chính phương hay
\(\left(x-8\right)x=k^2\)
\(\Leftrightarrow\left(x^2-8x+16\right)-k^2=16\)
\(\Leftrightarrow\left(x-4+k\right)\left(x-4-k\right)=16\)
Tới đây thì đơn giản rồi b làm tiếp nhé.