Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+y)2 = (x+y)(x-y)
<=>x2 + 2xy + y2 = x2 - y2
<=>2y2 + 2xy = 0
<=>2y(x+y) = 0
<=> y = 0 hoặc x + y = 0
<=>y = 0 hoặc y = -x
Dễ thấy vế trái chia hết cho 5 với y >0
Vậy y=0 , giải ra x
Học tốt!!!!!!!
Ta có : 2x;2x+1;2x+2;2x+3;2x+4 là 5 số tự nhiên liên tiếp.
=> 2x(2x+1)(2x+2)(2x+3)(2x+4)⋮5
Mặt khác ƯCLN ( 2x; 5)=1 nên (2x+1)(2x+2)(2x+3)(2x+4)⋮5
+ Với y≥1 thì VP= [(2x+1)(2x+2)(2x+3)(2x+4)−5y]⋮5
Mà VP= 11879≡4(mod5)
Suy ra phương trình vô nghiệm
+Với y=0 ta có :
(2x+1)(2x+2)(2x+3)(2x+4)−50=11879
<=> (2x+1)(2x+2)(2x+3)(2x+4)=11880
<=> (2x+1)(2x+2)(2x+3)(2x+4)=9.10.11.12
<=> 2x+1=9
<=> 2x=8
<=> 2x=23
<=>x=3
Vậy phương trình đã cho có 1 nghiệm duy nhất (x; y)=(3; 0)
\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=2x^2+2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3\left(x^2+y^2\right)\)\(b,\left(5x-1\right)+2\left(1-5x\right)\left(4x+5\right)+\left(5x+4\right)\)\(=\left[\left(5x-1\right)-\left(5x+4\right)\right]^2=25\)
c)\(Q=\left(x-y\right)^3+\left(x+y\right)^3+\left(x-y\right)^3-3xy\left(x+y\right)\)
\(=x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-3xy^2-3x^2y\)
\(=x^3+y^3\)
d)\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(2P=5^{32}-1\Rightarrow P=\dfrac{5^{32}-1}{2}\)
nhân cái đầu với cái cuối