Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a+5=7^c\Leftrightarrow5=7^c-a\)
Thay \(a^3+5a^2+21=7^b\) ta được :
\(a^3\left(7^c-a\right)\times a^2+21=7^b\)
\(\Rightarrow a^3+7^c\times a^2-a^3+21=7^b\)
\(\Rightarrow7^c\times a^2+21=7^b\)
\(\Rightarrow7^b-7^c\times a^2=21\left(1\right)\)
\(\Rightarrow7^c\times\left(7^{b-c}-a^2\right)=21\left(2\right)\)
Từ (1) suy ra \(7^b>7^c\times a^2\Rightarrow b>c\)
\(\Rightarrow7^{b-c}\) nguyên
Mà : \(a^2\) nguyên
Từ đó suy ra \(7^{b-c}-a^2\) nguyên
Kết hợp với \(\left(2\right)\Rightarrow21⋮7^c\)
Mà : \(7^c\ge7\) do c nguyên dương nên \(7^c=7\)\(\Rightarrow c=1\)
Thay vào \(a+5=7^c\) ta được \(a+5=7^1\Leftrightarrow a+5=7\Leftrightarrow a=2\)
Thay c =1 ; a=2 vào (2) ta có :
\(7^1\times\left(7^{b-1}-2^2\right)=21\)
\(\Rightarrow7^{b-1}-4=3\)
\(\Rightarrow7^{b-1}=7\)
\(\Rightarrow b-1=1\)
\(\Rightarrow b=2\)
Vậy a = 2 ; b = 2 ; c = 1
b) chia cả 2 vế cho xyz>0 ta được: \(\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}=3\)
không mất tính tổng quát, giả sử: \(x\ge y\ge z\ge1\). Ta có:
\(3=\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}\le\frac{15}{z^3}\Rightarrow z^3\le5\Rightarrow z=1\)
\(z=1\Rightarrow2x+2y+11=3xyz\Rightarrow3=\frac{2}{y}+\frac{2}{x}+\frac{1}{xy}\le\frac{15}{y^2}\Rightarrow y^2\le5\)
\(\Rightarrow\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1;x=1\\y=2;x=\frac{15}{4}\end{cases}}}\)
ĐCĐK và kết luận
Vậy (1;1;13);(13;1;1);(1;13;1)
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
1) Ta có pt : \(4x^2+\frac{1}{x^2}=8x+\frac{4}{x}\)
\(\Leftrightarrow4x^2+4+\frac{1}{x^2}=8x+4+\frac{4}{x}\)
\(\Leftrightarrow\left(2x+\frac{1}{x}\right)^2=4\left(2x+\frac{1}{x}\right)+4\)
\(\Leftrightarrow\left(2x+\frac{1}{x}\right)^2-4\left(2x+\frac{1}{x}\right)+4=8\)
\(\Leftrightarrow\left(2x+\frac{1}{x}-2\right)^2=8\)
Đến đây dễ rồi nhé, chia 2 TH.
1, \(16x^2-9=\left(4x\right)^2-3^2=\left(4x-3\right)\left(4x+3\right)\)
2,\(x^2-4+\left(x+2\right)^2=\left(x-2\right)\left(x+2\right)\left(x+2\right)^2=\left(x-2\right)\left(x+2\right)^3\)
3,\(5a\left(a-2\right)-a+2=5a\left(a-2\right)-1\left(a-2\right)=\left(5a-1\right)\left(a-2\right)\)
4,\(7\left(a-5\right)+8a\left(5-a\right)=7\left(a-5\right)-8a\left(a-5\right)=\left(7-8a\right)\left(a-5\right)\)
5, \(25a^2-4b^2+4b-1=25a^2-\left(4b^2-4b+1\right)=\left(5a\right)^2-\left(2b-1\right)^2=\left(5a-2b+1\right)\left(5a+2b-1\right)\)
a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có
\(a^2+b-\frac{12b^2}{a^2}=0\)
\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)
b/ \(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)
a) \(\frac{x^2+2}{5}\ge0\)
\(\Rightarrow x^2+2\ge0\)( đúng với mọi x )
Vậy \(S=\left\{ℝ\right\}\)
b) \(\frac{x+2}{x-3}< 0\)( ĐKXĐ : \(x\ne3\))
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\)( loại )
2. \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3\)
Vậy nghiệm của bất phương trình là -2 < x < 3
c) \(\frac{x-1}{x-3}>1\)( ĐKXĐ : \(x\ne3\))
\(\Leftrightarrow\frac{x-3+2}{x-3}>1\)
\(\Leftrightarrow1+\frac{2}{x-3}>1\)
\(\Leftrightarrow\frac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy nghiệm của bất phương trình là x > 3
Nhờ bạn khác vẽ trục số nhé vì mình mới lên lớp 8