Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây là phương trình vô định
2x+5y=13<=>2x=13-5y<=>x=\(\frac{13-5y}{2}=2-2y+\frac{9-y}{2}\)
đặt \(\frac{9-y}{2}=t\)
=>y=9-2t
the vo pt tính t rui tinh x va y
\(2x+5y=13\Leftrightarrow x=\frac{13-5y}{2}\Rightarrow\)y là số lẻ.
Đặt \(y=2z+1\left(z\in Z\right)\Rightarrow x=4-5z\)
Vậy tập nghiệm nguyên của phương trình là \(\cdot\left(x;y\right)=\left(4-5z;2z+1\right)\)với z nguyên
Ta có 2 x + 1 3 − y + 1 4 = 4 x − 2 y + 2 5 2 x − 3 4 − y − 4 3 = − 2 x + 2 y − 2
⇔ 40 x + 20 − 15 y − 15 = 48 x − 24 y + 24 6 x − 9 − 4 y + 16 = − 24 x + 24 y − 24
⇔ 8 x − 9 y = − 19 30 x − 28 y = − 31 ⇔ 120 x − 135 = − 285 120 x − 112 = − 124 ⇔ x = 11 2 y = 7
Thay x = 11 2 ; y = 7 vào phương trình 6mx – 5y = 2m – 66 ta được:
6m. 11 2 − 5.7 = 2m – 66 31m = −31 m = −1
Đáp án: A
Vì (3;5)=1 nên pt có nghiệm nguyên
\(3x-5y=9\\ \Rightarrow y=\frac{3x-9}{5}=\frac{1-2x}{5}+x-2\)
Đặt t=\(\frac{1-2x}{5}\left(t\in Z\right)\)
\(\Rightarrow x=\frac{1-5t}{2}\)\(=\frac{t-1}{2}+1-3t\)
Đặt n=\(\frac{t-1}{2}\left(n\in Z\right)\)\(\Rightarrow t=2n+1\)
\(\Rightarrow\begin{cases}y=t+x-2\\x=n+1-3t\\t=2n+1\end{cases}\Rightarrow\begin{cases}y=-3n-3\\x=-5n-2\end{cases}\left(n\in Z\right)}}\)
\(\Leftrightarrow y=\dfrac{3x-9}{5}=\dfrac{3\left(x-3\right)}{5}\)\(\Rightarrow x-3⋮5\)\(\Rightarrow x=5k+3\left(k\in Z\right)\)\(\Rightarrow y=\dfrac{3.5k}{5}=3k\)
Vậy pt có vô số nghiệm với nghiệm tổng quát (x;y)=(5k+3\(\left(k\in Z\right)\) ;3k).
To approve a single suggestion, mouse over it and click "✔" Click the bubble to approve all of its suggestions.
Vì (x; y) = (11; 6) là nghiệm của phương trình 3mx – 5y = 2m +1 nên ta có:
3m.11 – 5.6 = 2m + 1
⇔ 33m – 30 = 2m + 1 ⇔ 31m = 31 ⇔ m = 1
Vậy với m = 1 thì nghiệm của x + 1 3 - y + 2 4 = 2 x - y 5 x - 3 4 - y - 3 3 = 2 y - x cũng là nghiệm của phương trình 3mx – 5y = 2m + 1.
Có: (2; 5; 1 ) =1
=> Đưa pt trên về dạng: 2x + 5y = 4 +z
Lấy z = u, u thuộc Z
Đặt: c = 4 +u
Ta có phương trình: 2 x + 5 y = c
Phương trình trên có 1 nghiệm riêng là: x0 = 3c và y0 = -c.
=> Phương trình trên có nghiệm tổng quát là: x = 3c + 5t và y = -c -2t với t thuộc Z
Thay c = 4 +u vào ta có nghiệm của pt ban đầu là:
\(\hept{\begin{cases}x=3\left(4+u\right)+5t=12+3u+5t\\y=-\left(4+u\right)-2t=-4-u-2t\\z=u\end{cases}}\)
với u, t bất kì thuộc Z.
x=4
y=1
tick nha Khánh Cù
x=4
y=1.tick mk di!!!