K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NH
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NB
0
CN
1
14 tháng 2 2018
\(19x^2+28y^2=729\)
\(\Leftrightarrow18x^2+27y^2+x^2+y^2=3.243=9.81\)
\(\Rightarrow\left(x^2+y^2\right)⋮3\Rightarrow x,y⋮3\)
(vì a^2 chia cho 3 dư 1)
đặt x = 3u, y =3v thay vào pt:
19.(3u)^2 + 28(3v)^2 = 9.81
=> 19u^2 + 28.v^2 = 81
lập luận tương tự: đặt u = 3u1, v =3v1, ta có:
19(3.u1)^2 + 28(3.v1)^2 = 9.9
=> 19u1^2 + 28v1^2 = 9
tượng tự: đặt u1 = 3.u2, v1 = 3.v2, ta có:
19.(3.u2)^2 + 28(3.v2)^2 = 9
=> 19u2^2 + 28v2^2 = 1 pt nầy vô nghiệm
vậy pt đã cho không có nghiệm nguyên
9 tháng 1 2016
ai giup vs
Cho x,y là hai số thoả mãn 2(x2+y2)=(x-y)2 Khi đó ta có hệ thức biểu diễn mối quan hệ giữa x,y là x=....y
giải chi tiết nha
Ta có :
\(19x^2+28y^2=2001\) ( 1 )
\(\Leftrightarrow\left(18x^2+27y^2\right)+\left(x^2+y^2\right)=2001\)
Vì \(18x^2+27y^2⋮3\)và \(2001⋮3\)
nên \(x^2+y^2⋮3\)
Mà 1 số chính phương chia cho 3 chỉ có thể dư 0 và 1 nên \(x^2+y^2⋮3\Leftrightarrow\hept{\begin{cases}x⋮3\\y⋮3\end{cases}}\)
Đặt \(\hept{\begin{cases}x=3m\\y=3n\end{cases}}\)( m,n thuộc Z)
Thay x=3m và y=3n vào ( 1 ) , ta có :
\(19\left(3m\right)^2+28\left(3n\right)^2=2001\)
\(\Leftrightarrow19m^2+28n^2=\frac{667}{3}\)
Phương trình này vô nghiệm vì m , n là các số nguyên
Vậy PT vô nghiệm .