K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Tìm nghiệm nguyên dương của phương trình: x^2+(x+y)^2=(x+9)^2 - Đại số - Diễn đàn Toán học

8 tháng 11 2016

Ta có

\(1\left(x+1\right)\left(x+2\right)\left(x+8\right)\left(x+9\right)=y^2\)

\(\Leftrightarrow1\left(x^2+10x+9\right)\left(x^2+10x+16\right)=y^2\)

Đặt x2 + 10x + 16 = a thì pt thành

a(a + 7) = y2

<=> 4a2 + 28a = 4y2

<=> (4a2 + 28a + 49) - 4y2 = 49

<=> (2a + 7)2 - 4y2 = 49

<=> (2a + 7 - 2y)(2a + 7 + 2y) = 49

<=> (2a + 7 - 2y, 2a + 7 + 2y) = (1, 49; 49, 1; 7, 7; - 1,- 49; - 49, - 1; - 7, - 7)

Thế vào rồi giải sẽ tìm được x,y

9 tháng 11 2016

thanks

2 tháng 6 2017

\(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)

\(\Leftrightarrow y\left[2y^2+\left(x^2-3x\right)y+3x^2+x\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\2y^2+\left(x^2-3x\right)y+3x^2+x=0\end{cases}}\)

Với \(y=0\)thì x nguyên tùy ý.

Với \(2y^2+\left(x^2-3x\right)y+3x^2+x=0\)

Ta có: \(\Delta=\left(x^2-3x\right)^2-4.2.\left(3x^2+x\right)=\left(x-8\right)x\left(x+1\right)^2\)

Với \(x=-1\) thì \(\Rightarrow y=-1\)

Với \(x\ne-1\) để y nguyên thì \(\Delta\) phải là số chính phương hay

\(\left(x-8\right)x=k^2\)

\(\Leftrightarrow\left(x^2-8x+16\right)-k^2=16\)

\(\Leftrightarrow\left(x-4+k\right)\left(x-4-k\right)=16\)

Tới đây thì đơn giản rồi b làm tiếp nhé.

2 tháng 6 2017

( x+ y) ( x + y2) = ( x - y )3


 

19 tháng 3 2020

ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên

\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)

từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được

\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)

=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)

=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)

zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)

=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)

mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)

zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0

zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)

zới y=2 , m=1 thì ta tính đc x=1

zới y=3 , m=1 thì ta tính đc x=-1

zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)

14 tháng 5 2018

PT \(\Leftrightarrow\left(y^2-5y+6\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)

\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)

\(\Leftrightarrow\left(y-2\right)\left(x^2+yx-4x-y+3\right)=56\) 

\(\Leftrightarrow\left(y-2\right)\left(x-1\right)\left(x+y-3\right)=56\)

Ta nhận thấy x+y-3 là tổng của y-2, x-1

Đến đây ta xét lần lượt các trường hợp là ra

10 tháng 3 2018

Xét đen-ta thử đi bạn