K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

Số 12 nhỏ phía sau không phải đâu các bạn nhé !

7 tháng 3 2019

\(8x^2-3xy-5y=25\)

\(\Leftrightarrow8x^2-25=3xy+5y\Leftrightarrow8x^2-25=y\left(3x+5\right)\)

\(\Leftrightarrow y=\frac{8x^2-25}{3x+5}\)\(\Rightarrow9y=\frac{72x^2-225}{3x+5}=24x-40-\frac{25}{3x+5}\)

\(\Rightarrow3x+5\inƯ\left(25\right)=\pm1;\pm5;\pm25\)

Đến đây bạn tự suy ra x rồi thay vào biểu thức trên để suy ra y là ok.

10 tháng 9 2020

2x2 + y2 + 3xy + 3x + 2y + 2 = 0

<=> 8x2 + 4y2 + 12xy + 12x + 8y + 8 = 0

<=> (4y2 + 12xy + 9x2) + 4(3x + 2y) + 4 - x2 + 4 = 0

<=> (3x + 2y + 2)2 - x2 = -4

<=> (3x + 2y + 2 - x)(3x + 2y + 2 + x) = -4

<=> (2x + 2y + 2)(4x + 2y + 2) = -4

<=> (x + y + 1)(2x + y + 1) = -1

Xét các TH xảy ra <=>

\(\hept{\begin{cases}x+y+1=1\\2x+y+1=-1\end{cases}}\)

\(\hept{\begin{cases}x+y+1=-1\\2x+y+1=1\end{cases}}\)

(tự tính)

10 tháng 9 2020

Ta có: \(2x^2+y^2+3xy+3x+2y+2=0\)

    \(\Leftrightarrow y^2+y.\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y. Do đó ta xét :

    \(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\)\(\Rightarrow\)\(x^2-4\ge0\)\(\Rightarrow\)\(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ 

Đặt \(x^2-4=k^2\)\(\Rightarrow\)\(\left(x-k\right).\left(x+k\right)=4\)

Ta luôn có \(x+k>x-k\) với \(k>0\)

Xét các trường hợp với \(x-k\)\(x+k\)là các số nguyên được 

\(\hept{\begin{cases}x=2\\k=0\end{cases}}\)và  \(\hept{\begin{cases}x=-2\\k=0\end{cases}}\)

Suy ra được \(\hept{\begin{cases}x=-2\\y=2\end{cases}}\)và  \(\hept{\begin{cases}x=2\\y=-4\end{cases}}\)

Học tốt

4 tháng 6 2016

Bạn sửa lại đề đi:

Tìm nghiệm nguyên của phương trình: \(^{x^2-4xy+5y^2+10x-22y+26=0}\)

5 tháng 6 2016

khác j nhau đâu

25 tháng 9 2016

x2 - 2y2 = 5

=>x2=2y2+5  (1)

=>x là số lẻ. Đặt \(x=2k+1\left(k\in Z\right)\). Khi đó

\(\left(1\right)\Leftrightarrow\left(2k+1\right)^2=2y^2+5\)

\(\Leftrightarrow4k^2+4k+1=2y^2+5\)

\(\Leftrightarrow2y^2=4k^2+4k-4\)

\(\Leftrightarrow y^2=2\left(k^2+k-1\right)\) (2)

=>y chẵn. Đặt \(y=2n\left(n\in Z\right)\). Khi đó 

\(\left(2\right)\Leftrightarrow4n^2=2\left(k^2+k-1\right)\)

\(\Leftrightarrow2n^2+1=k\left(k+1\right)\) (*)

Nhìn vào (*) ta thấy VT lẻ, VP chẵn (vì k; k+1 là 2 số nguyên liên tiếp nên một trong 2 số là chẵn)

=> (*) vô nghiệm =>pt đầu vô nghiệm

Vậy không có x,y nguyên nào thỏa mãn 

10 tháng 2 2017

x2 - 2y2 = 5   (4)

Lời giải : Từ phương trình (4) ta => x phải là số lẻ. Thay x = 2k + 1 (k thuộc Z) vào (4), ta được : 
4k2 +4k + 1 - 2y2 = 5 
tương đương 2(k2 + k - 1) = y2 
=> y2 là số chẵn => y là số chẵn.

Đặt y = 2t (t thuộc Z), ta có : 
2(k2 + k - 1) = 4t2 
tương đương k(k + 1) = 2t2 + 1   (**)

Nhận xét : k(k + 1) là số chẵn, 2t2 + 1 là số lẻ => phương trình (**) vô nghiệm.

Vậy phương trình (4) không có nghiệm nguyên.