Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-16\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-4\right)^2=0\)
Mà \(\left(x-2y\right)^2\ge0\forall x:y\)
\(\left(y-4\right)^2\ge0\forall y\)
Dấu " = " xảy ra khi :
\(\orbr{\begin{cases}x-2y=0\\y-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2y\\y=4\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=8\\y=4\end{cases}}\)
Vậy \(\left(x;y\right)=\left(8;4\right)\)
a.ta có \(\left(x+3\right)\left(y-7\right)=-21\Rightarrow y-7\in\left\{-3,-1\right\}\) ( do x+3>3 và 0>y-7>-7)
\(\Rightarrow\hept{\begin{cases}y=4\\x=4\end{cases}\text{ hoặc }}\hept{\begin{cases}y=6\\x=18\end{cases}}\)
c. \(\left(x-5\right)\left(y-5\right)=26=2\cdot13\Rightarrow x-5\in\left\{-2,-1,1,2,13,26\right\}\)
suy ra \(\left(x,y\right)\in\left\{\left(6,31\right);\left(31,6\right);\left(7,18\right);\left(18,7\right)\right\}\)
b.\(4xy+5y-14x=3\Leftrightarrow8xy+10y-28x=6\)
\(\Leftrightarrow\left(4x+5\right)\left(2y-7\right)=-29\)
mà 4x+5>5\(\Rightarrow4x+5=29\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Theo mình đề đúng là :
\(x^2-4xy+5y^2=17\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=17\)
= 1+16
= 16+1
Ta có bảng sau:
x-2y | 1 | 1 | -1 | -1 | 4 | 4 | -4 | -4 |
y | 4 | -4 | 4 | -4 | 1 | -1 | 1 | -1 |
x | 9 | -7 | 7 | -9 | 6 | 2 | -2 | -6 |
y | 4 | -4 | 4 | -4 | 1 | -1 | 1 | -1 |
Vậy \(\left(x;y\right)=\left\{\left(9;4\right);\left(-7;-4\right);\left(7;4\right);\left(-9;-4\right);\left(6;1\right);\left(2;-1\right);\left(-2;1\right);\left(-6;-1\right)\right\}\)
Ta có: \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Vì \(x;y\in Z\Rightarrow\left(x-2y\right)^2\in Z;y^2\in Z\)
Và \(\left(x-2y\right)^2\ge0,y^2\ge0\)
\(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\)
Ta có các tập nghiệm: \(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\) thì thỏa mãn phương trình
PT \(\Leftrightarrow x^2+\left(-4y\right).x+\left(5y^2-16\right)=0\)
Để PT trên có nghiệm \(\Leftrightarrow\Delta=\left(-4y\right)^2-4\left(5y^2-16\right)\ge0\)
\(\Leftrightarrow16y^2-20y^2+64\ge0\Leftrightarrow-4y^2+64\ge0\Leftrightarrow-4y^2\ge-64\)
\(\Leftrightarrow y^2\le16\Rightarrow-4\le y\le4\)
Đến đây xét các giá trị của y là tìm ra x