K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 1 2021

\(\Leftrightarrow7x-7=16-4y\)

\(\Leftrightarrow7\left(x-1\right)=4\left(4-y\right)\)

Do 7 và 4 nguyên tố cùng nhau

\(\Rightarrow x-1⋮4\Rightarrow x-1=4k\Rightarrow x=4k+1\)

\(\Rightarrow y=-7k+4\)

Vậy nghiệm của pt có dạng: \(\left(x;y\right)=\left(4k+1;-7k+4\right)\) với \(k\in Z\)

31 tháng 12 2021

Answer:

\(\left|46x+49\right|=\left|19x+17\right|\)

\(\Rightarrow\orbr{\begin{cases}46x+49=19x+17\\46x+49=-19x-17\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-32}{27}\\x=\frac{-66}{65}\end{cases}}\)

\(\Rightarrow\left|x_1-x_2\right|=\left|\frac{-32}{27}-\left(\frac{-66}{65}\right)\right|=\frac{298}{1755}\)

15 tháng 12 2021

2x² - 3x + 2 = (1/8)(16x² - 24x + 9) + 7/8 = (1/8)(4x - 3)² + 7/8 > 0 nên |2x² - 3x + 2| = 2x² - 3x + 2

|2x² - 3x + 2| = 5m - 8x - 2x²

⇔ 2x² - 3x + 2 = 5m - 8x - 2x²

⇔ 4x² + 5x + 2 - 5m = 0

Để PT có nghiệm duy nhất thì đó phải là nhiệm kép :

Δ = 25 - 16(2 - 5m) = 80m - 7 = 0 ⇔ m = 7/80

NV
15 tháng 3 2022

Pt có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow2\left(m+3\right)< 0\)

\(\Rightarrow m< -3\)

NV
5 tháng 12 2021

Pt đã cho có 2 nghiệm khi: 

\(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-1\right)^2-m\left(m-5\right)>0\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\3m+1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m>-\dfrac{1}{3}\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2\left(m-1\right)}{m}\\x_1x_2=\dfrac{m-5}{m}\end{matrix}\right.\)

\(x_1< x_2< 2\Rightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-5}{m}+\dfrac{4\left(m-1\right)}{m}+4>0\\\dfrac{-2\left(m-1\right)}{m}< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{9m-9}{m}>0\\\dfrac{6m-2}{m}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}m>\dfrac{1}{3}\\m< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)

Kết hợp điều kiện ban đầu \(\Rightarrow\left[{}\begin{matrix}m>1\\-\dfrac{1}{3}< m< 0\end{matrix}\right.\)

ĐKXĐ: m<>-1

Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(m-2\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-m-2\right)\)

\(=4m^2-8m+4-4m^2+4m-8\)

\(=-4m-4\)

Để phương trình có hai nghiệm phân biệt thì -4m-4>0

hay m<-1

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1\cdot x_2=\dfrac{m-2}{m+1}\\x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\end{matrix}\right.\)

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4x_1x_2\)

\(\Leftrightarrow\left(\dfrac{2m-2}{m+1}\right)^2-6\cdot\dfrac{m-2}{m+1}=0\)

\(\Leftrightarrow\left(2m-2\right)^2-6\left(m^2-m-2\right)=0\)

\(\Leftrightarrow4m^2-8m+4-6m^2+6m+12=0\)

\(\Leftrightarrow-2m^2-2m+16=0\)

\(\Leftrightarrow m^2-m-8=0\)

Đến đây bạn tự giải nhé

5 tháng 12 2021

PT có 2 nghiệm \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4\left(m-2\right)\left(m+1\right)\ge0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m+8\ge0\\ \Leftrightarrow12-4m\ge0\\ \Leftrightarrow m\le3\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\\x_1x_2=\dfrac{m-2}{m+1}\end{matrix}\right.\)

\(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=-4\\ \Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-4\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=-4x_1x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2=-2x_1x_2\\ \Leftrightarrow\dfrac{4\left(m-1\right)^2}{\left(m+1\right)^2}=\dfrac{4-2m}{m+1}\\ \Leftrightarrow4\left(m-1\right)^2=\left(4-2m\right)^2\\ \Leftrightarrow4m^2-8m+4=16-16m+4m^2\\ \Leftrightarrow8m=12\Leftrightarrow m=\dfrac{3}{2}\left(tm\right)\)

13 tháng 5 2021

`m=5`

`=>-20x+5-3=0`

`=>-20x+2=0`

`=>x=-1/10=>m=5` pt có nghiệm

Nếu `m ne 5=>` pt trên là pt bậc 2

ĐK để pt bậc 2 có nghiệm

`=>Delta'>0`

`<=>4m^2-(m-2)(m-5)>0`

`<=>4m^2-(m^2-7m+5)>0`

`<=>3m^2+7m-5>0`

`<=>m^2+7/3m-5/3>0`

`<=>(m+7/6)^2-109/36>0`

`<=>` \(\left[ \begin{array}{l}m>\dfrac{\sqrt{109}-7}{6}\\m<\dfrac{-\sqrt{109}-7}{6}\end{array} \right.\) 

b: \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-4=2m-1\\x^2-3x-4=-2m+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-3x-4-2m+1=0\\x^2-3x-4+2m-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-2m+3=0\\x^2-3x+2m-5=0\end{matrix}\right.\)

Để phương trình có bốn nghiệm phân biệt thì \(\left\{{}\begin{matrix}9-4\left(-2m+3\right)>0\\9-4\left(2m-5\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9+8m-12>0\\9-8m+20>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8m>3\\8m< 29\end{matrix}\right.\Leftrightarrow\dfrac{3}{8}< m< \dfrac{29}{8}\)