Tìm nghiệm nguyên của

phương trình 1/x-1/y+2=3/xy

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

\(\frac{1}{x}-\frac{1}{y+2}=\frac{3}{xy}\)

\(\Rightarrow\frac{y+2-x}{x\left(y+2\right)}=\frac{3}{xy}\)

\(\Rightarrow\)xy(y + 2 - x) = 3x(y + 2)

\(\Rightarrow xy^2-x^2y+2xy=3xy+6x\)

\(\Rightarrow xy^2-x^2y-xy-6x=0\)

\(\Rightarrow x\left(y^2-xy-y-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\left(\text{loại}\right)\\y^2-xy-y-6=0\end{cases}}\)

Khi y2 - xy - y - 6 = 0

\(\Rightarrow y\left(y-x-1\right)=6\)

Lập bảng xét các trường hợp

y16-1-623-2-3
y - x - 161-6-132-3-2
x-644-6-20(loại)0(loại)-2

Vậy các cặp (x;y) thỏa mãn là (-6;1) ; (4;6) ; (4;-1) ; (-6;-6) ; (-2;2) ; (-2;-3)

bạn ơi số 2 là riêng ra nhé ko có phần j đâu

16 tháng 12 2017

a,f(1/2)=5-2*(1/2)=5-1=4

   f(3)=5-2x3=5-6=-1

b,Với y=5 thì 5-2x=5

                    2x=5-5

                    2x=0

                    x=0:2=0

                   Vậy x=0

 Với y=-1 thì 5-2x=-1

                   2x=5-(-1)

                   2x=5+1

                   2x=6

                   x=6:2=3 

              Vậy x=3

16 tháng 12 2017

a) Thay f(1/2) vào hàm số ta có :

y=f(1/2)=5-2.(1/2)=4

Thay f(3) vào hàm số ta có :

y=f(3)=5-2.3=-1

b) y=5-2x <=> 5-2x=5

2x=5-5

2x=0

=> x=0

<=> 5-2x=-1

2x=5-(-1)

2x=6

=> x=3

25 tháng 12 2018

a, f (1/2) = 5 - 2.1/2 = 4

    f (3) = 5 - 2.3 = -1

b, y = 5 <=> 5 - 2x = 5

             <=>  x  = 0

    y = -1 <=> 5 - 2x = -1

               <=> x = 3

_Hok tốt_

  ( sai thì thôi nha )

10 tháng 7 2017

a) Ta có :  (3x - 0.5) ( 2x + 2.5) = 0

\(\Leftrightarrow\orbr{\begin{cases}3x-0,5=0\\2x+2,5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=0,5\\2x=-2,5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{0,5}{3}=\frac{1}{6}\\x=-\frac{2,5}{2}=\frac{5}{4}\end{cases}}\)

1 tháng 11 2017

là 5/4 nhé!

25 tháng 2 2019

 tự làm

12 tháng 1 2016

x=0, làm rồi nên biết đúng 100% đó

12 tháng 1 2016

nhung to can cach giai

 

17 tháng 6 2019

\(VD3,\sqrt{x+\sqrt{x}}=y\left(x\ge0\right)\)

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\x+\sqrt{x}=y^2\end{cases}}\)

Dễ thấy x phải là số chính phương

Đặt \(x=a^2\left(a\in N\right)\)

\(\Rightarrow a^2+a=y^2\)

\(\Leftrightarrow a\left(a+1\right)=y^2\)

Vì VP là số chính phương nên \(a\left(a+1\right)\)là số chính phương

Mà a và a + 1 là 2 số tự nhiên liên tiếp và a < a + 1

Nên a = 0 (tích 2 số nguyên liên tiếp là 1 scp thì phải có 1 số bằng 0 mà a < a + 1 nên a = 0)

Khi đó x = 0 ; y = 0

Vậy pt có nghiệm nguyên (x;y)=(0;0)

17 tháng 6 2019

VD1

<=> \(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)

\(x=0;1\)không thỏa mãn

+  \(x=2\)=> \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\)đúng

+  \(x>2\)

=> \(\left(\frac{3}{5}\right)^x< \left(\frac{3}{5}\right)^2,\left(\frac{4}{5}\right)^x< \left(\frac{4}{5}\right)^2\)

=> \(VT< 1\)(loại)

Vậy x=2

1/Chu vi tam giác đó là: \(3\sqrt{3}.3=15.6\)cm làm tròn số

2/ Trung tuyến là gì?