K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

sao bn ko ra sớm hơn nhỉ

thầy toán mới ra bài này làm bài khó cuối cùng cho lớp mik

29 tháng 1 2019

Đặt phương trình trên là (1)

Ta thấy 120 và 18y đều chia hết cho 6. Nên \(11x⋮6\Leftrightarrow x⋮6\) (vì 11 và 6 là hai số nguyên tố cùng nhau)

Đặt \(x=6t\left(t\inℤ\right)\).Thay vào phương trình (1) được:

\(11.6t+6.3y=120\Leftrightarrow11t+3y=\frac{120}{6}=20\)

Suy ra \(3y=20-11t\Leftrightarrow y=\frac{20-11t}{3}\)

Vậy \(\hept{\begin{cases}x=6t\\y=\frac{20-11t}{3}\end{cases}}\) (t nguyên, sao cho \(20-11t⋮3\))

6 tháng 11 2019

Do \(18y;120\) đều chia hết cho 6. Nên \(11x⋮6\). Mà (11;6) = 1.

Do đó \(x⋮6\). Đặt x = 6k (k\(\in\mathbb{N}^{\text{*}}\))

PT \(\Leftrightarrow11.6k+3.6y=20.6\)

\(\Leftrightarrow11k+3y=20\Leftrightarrow y=\frac{20-11k}{3}\)

Rồi chị thử lí luận các kiểu tiếp xem sao? Em ko chắc đâu á!

11x+18y=120⇒x=120−18y11=121−1−22y+4y1111x+18y=120⇒x=120−18y11=121−1−22y+4y11⇔x=11−2y+4y−111⇔x=11−2y+4y−111

⎧⎨⎩4y−111=k11k=4y−1{4y−111=k11k=4y−1 ⇒y=11k+14=12k−k+14=3k−k−14⇒y=11k+14=12k−k+14=3k−k−14

⎧⎨⎩k−14=n4n=k−1{k−14=n4n=k−1 ⇒k=4n+1⇒k=4n+1

⇒{y=3.(4n+1)−n=11n+3x=11−2(11n+3)+4n+1=6−18n⇒{y=3.(4n+1)−n=11n+3x=11−2(11n+3)+4n+1=6−18n

x,y>0⇒{6−18n>011n+3>0x,y>0⇒{6−18n>011n+3>0 ⎧⎪ ⎪⎨⎪ ⎪⎩n<618n>−311{n<618n>−311 ⇒n={0}⇒n={0}

Nghiệm duy nhất của phương trình là:

{x=6y=3

17 tháng 11 2015

ta có 11x+7y=5

y=\(\frac{5-11x}{7}=1-x-\frac{2+4x}{7}\)

đặt \(\frac{2+4x}{7}=t\)

=>x=\(\frac{7t-2}{4}\)

thế x,y vào pt 11x+7y=5

roi giai ra 

tick nha

15 tháng 6 2017

\(\frac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y-1}+2\)

\(\Leftrightarrow\sqrt{4y-1}-\sqrt{2x+1}=3y+2-\frac{11x}{5}\)

Vì 4y - 1 chia cho 4 có số dư là 2 nên \(\sqrt{4y-1}\)là số vô tỷ .

Ta có VP là số hữu tỉ. VT là số vô tỷ và \(\hept{\begin{cases}4y-1\\2x+1\end{cases}}\)là 2 số hữu tỷ nên.

\(\Rightarrow\sqrt{4y-1}-\sqrt{2x+1}=0\)

\(\Leftrightarrow x=2y-1\)

Thế lại phương trình ban đầu ta được.

\(\Rightarrow y=3\)

\(\Rightarrow x=5\)

Vậy nghiệm cần tìm là \(\hept{\begin{cases}x=5\\y=3\end{cases}}\) 

11x5 −√2x+1=3y−√4y−1+2

⇔√4y−1−√2x+1=3y+2−11x5 

Vì 4y - 1 chia cho 4 có số dư là 2 nên √4y−1là số vô tỷ .

Ta có VP là số hữu tỉ. VT là số vô tỷ và {

4y−1
2x+1

là 2 số hữu tỷ nên.

⇒√4y−1−√2x+1=0

⇔x=2y−1

Thế lại phương trình ban đầu ta được.

⇒y=3

⇒x=5

Vậy nghiệm cần tìm là {

x=5
y=3
27 tháng 10 2020

\(2x^2+3y^2+4x=19\)

<=> \(2\left(x^2+2x+1\right)+3y^2=21\)

<=> \(2\left(x+1\right)^2+3y^2=21\)

<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)

=> \(y^2\le7\)(1) 

Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)

=> 21 - 3y^2 là số chẵn  => 3y^2 là số lẻ => y^2 là số chính phương lẻ  (2) 

Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1 

=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4

Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)

8 tháng 7 2017

Phương trình 2 x 2 − 11x + 3 = 0 3 = 97 > 0 nên phương trình có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = − b a x 1 . x 2 = c a ⇔ x 1 + x 2 = 11 2 x 1 . x 2 = 3 2

Ta có

A = x 1 2   + x 2 2 = x 1 + x 2 2 - 2 x 1 x 2 1 + x 2 ) = 11 2 2 − 2. 3 2 = 109 4

Đáp án: A

25 tháng 4 2017

\(x^2+2ax-4a+13=0\)

\(\Leftrightarrow\left(x^2+2ax+a^2\right)-\left(a^2+4a+4\right)=17\)

\(\Leftrightarrow\left(x+a\right)^2-\left(a+2\right)^2=17\)

\(\Leftrightarrow\left(x+2a+2\right)\left(x-2\right)=17\)

\(\Rightarrow\left(x+2a+2,x-2\right)=\left(1,17;17,1;-1,-17;-17,-1\right)\)

Giải tiếp sẽ ra.

Do phương trình là PT bậc 2 nên PT có 2 nghiệm nguyên thỏa : 

\(\hept{\begin{cases}x_1+x_2=S=2a\\x_1.x_2=P=-4a+13\end{cases}}\)

giải hệ thôi nha bạn