\(1009x^3-1000y^3=2009.2010.2011\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

Ta thấy:

$1009x^3-1000y^3\equiv x^3-y^3\pmod 9$

Một số lập phương khi chia 9 dư $0,1,-1$. Do đó $x^3-y^3\equiv 0,-1,2,1,-2\pmod 9$

Mà: $2009.2010.2011\equiv 2.3.4\equiv 6\pmod 9$

Do đó PT $1009x^3-1000y^3=2009.2010.2011$ vô nghiệm.

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

nguyễn thanh huyền: lớp 8 thì đã học số dư, tính chất số chính phương, lập phương rồi nên cách này hoàn toàn phù hợp mà bạn?

31 tháng 3 2020

a)11x-7<8x+7

<-->11x-8x<7+7

<-->3x<14

<--->x<14/3 mà x nguyên dương 

---->x \(\in\){0;1;2;3;4}

31 tháng 3 2020

b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4

<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)

<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48

<--->21x>-45

--->x>-45/21=-15/7  mà x nguyên âm 

----->x \(\in\){-1;-2}

21 tháng 8 2020

Từ PT \(\Leftrightarrow x^2-2xy+y^2+x^2+y^2=6\)

\(\Leftrightarrow\left(x-y\right)^2+x^2+y^2=6\)

\(\Rightarrow x^2< 6\Leftrightarrow x^2\in\left\{1,4\right\}\Leftrightarrow x\in\left\{1;-1;2;-2\right\}\)

Với \(x=1\)thì \(1-y+y^2=3\Leftrightarrow y^2-y=2\Leftrightarrow y\left(y-1\right)=2\Leftrightarrow\orbr{\begin{cases}y=2\\y=-1\end{cases}}\)

Với \(x=-1\) thì \(1+y+y^2=3\Leftrightarrow y\left(y+1\right)=2\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

Với \(x=2\) thì \(4-2y+y^2=3\Leftrightarrow y^2-2y+1=0\Leftrightarrow\left(y-1\right)^2=0\Leftrightarrow y=1\)

Với \(x=-2\) thì \(4+2y+y^2=3\Rightarrow y^2+2y+1=0\Leftrightarrow\left(y+1\right)^2=0\Leftrightarrow y=-1\)

Vậy các cặp số nguyên x,y thỏa mãn \(x^2-xy+y^2=3\) là \(\left(x,y\right)=\left\{\left(1,2\right);\left(1,-1\right);\left(-1,1\right);\left(-1,-2\right);\left(2,1\right);\left(-2,-1\right)\right\}\)

26 tháng 9 2016

\(a^2+b^2=3-ab\)

\(\Leftrightarrow a^2+b^2+ab=3\)

\(\Leftrightarrow\left(a+\frac{b}{2}\right)^2=\left(3-\frac{3b^2}{4}\right)\)

Vì \(\left(a+\frac{b}{2}\right)^2\ge0\)

\(\Rightarrow\left(a+\frac{3b^2}{4}\right)\ge0\)

\(\Rightarrow-2\le y\le2\)

Lần lượt thay y = -2 ; 2 ; -1 ; 1 ; 0 vào phương trình để tính x. Ta có các nghiệm nguyên của phương trình là :
(x ; y) thuộc {(-2;1); (1;-2); (-1;2); (2;-1); (1;1) }

26 tháng 9 2016

Bạn là fan khởi my à

eoeo

6 tháng 12 2016

hello

8 tháng 12 2016

holee