\(x^3+y^3+z^3=x+y+z-2017\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

phương trình 1 có nhiều ẩn thế bn

2 tháng 1 2018

Câu 2:, ta có 

Xét x=1, ...

Xét x khác 1 ...

\(y=\frac{x^2+2}{x-1}=\frac{x^2-1+3}{x-1}=x+1+\frac{3}{x-1}\)

và y là số nguyên => x-1 llà ước của 3, đến đây tự giải nhé 

^_^

28 tháng 12 2016

hay ak m hjhj

28 tháng 12 2016

rất cần có những bài như thế này để mn tham khảo, cám ơn bn

9 tháng 7 2018

a/\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\left(đpcm\right)\)

b/ \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\left(đpcm\right)\)

c/ \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+y^2+xy+yz+z^2+zx+yz=x^2+y^2+z^2+2xy+2yz+2zx\left(đpcm\right)\)

d/ \(\left(x+y+z\right)^3=\left(x+y\right)^3+3\left(x+y\right)^2z+3z^2\left(x+y\right)+z^3\)

\(=\left(x+y\right)^3+3z\left(x^2+2xy+y^2\right)+3z^2\left(x+y\right)+z^3\)

\(=x^3+3x^2y+3xy^2+y^3+3x^2z+6xyz+3y^2z+3z^2x+3yz^2+z^3\)

\(=x^3+y^3+z^3+3xyz+3x^2y+3xy^2+3x^2z+3y^2z+3y^2x+3yz^2+3xyz\)

\(=x^3+y^3+z^3+\left(x+z\right)\left(3xy+3xz+3y^2+3yz\right)\)

\(=x^3+y^3+z^3+\left(x+z\right)\left[3x\left(y+z\right)+3y\left(y+z\right)\right]\)

\(=x^3+y^3+z^3+\left(x+z\right)\left(y+z\right)\left(3x+3y\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)

9 tháng 7 2018

a, Xét vế trái ta có:

(x-1)(x^2+ x+1)=x^3+ x^2+ x- x^2- x-1

=x^3+ (x^2- x^2)+(x-x)-1

=x^3-1

Vậy...

b,Xét vế trái ta có:(x^3+ x^2y+ xy^2+ y^3)(x-y)

=x^4- x^3y+ x^3y- x^2- y^2+ x^2y^2- xy^3+ xy^3- y^4

=x^4-y^4

Vậy ........

c, Xét vế trái ta có:

(x+y+z)^2=(x+y+z)(x+y+z)

=x^2+ xy+ xz+ yx+y^2+ yz+ zx+ zy+ z^2

=x^2+ y^2+ z^2+ 2xy+ 2xz+ 2yz

Vậy...............

d, Xé vế trái ta có:

(x+y+x)^3=(x+y+z)(x+y+z)(x+y+z)(x+y+z)

=(x^2+y^2+z^2+2xy+2xz+2yz)(x+y+z)

=x^3+ xy^2+ xz^2+ 2x^2y+ 2xyz+ 2x^2z+ x^2y+ y^3+ yz^2+2xy^2+ 2y^2z+z^3+ 2xyz+ x^2z+ y^2z+2xyz+ 2yz^2+ 2xz^2

=x^3+ 3xy^2+ 6xy+ 3x^2y+3xz^2+ 3x^2z+ 3yz^2+ y^3z^3 (1)

Xét vế phải ta có:x^3+ y^3+ z^3+ 3(x+y)(x+y)(y+z)

=x^3+ y^3+ z^3+ 3(xy+ xz+ y^2+ yz)(z+x)

=x^3+ y^3+ z^3+ 3(xyz+ xz^2+ y^2z+ yz^2+ x^2y+ x^2z+ xy^2+xyz)

=x^2+ y^3+ z^3 +3(2xyz+ xz^2+ y^2z+ yz^2+x^2y+x^2z+ xy^2)

=x^3+ y^3+ z^3+6xyz+ 3xz^2+ 3y^2z+3yz^2+ 3x^2y+3x^2z+3xy^2(2)

Từ (1) và (2)=>.......

9 tháng 9 2017

help me

  • Toshiro Kiyoshi30GP
  • Nguyễn Đình Dũng19GP
  • Nguyễn Huy Thắng17GP
  • Nguyễn Thanh Hằng16GP
  • Nguyễn Thị Hồng Nhung15GP
  • Rồng Đỏ Bảo Lửa11GP
  • Mysterious Person10GP
  • Đời về cơ bản là buồn... cười!!!8GP
  • Huy Thắng Nguyễn8GP
  • Ánh Dương Hoàng Vũ6GP
9 tháng 9 2017

làm đc chưa,bảo t với........

11 tháng 7 2017

1 , \(x^5+x^4+1=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

= \(x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)=\(\left(x^2+x+1\right)\left(x^3-x+1\right)\)

2 , \(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128=\left(x^2+10x\right)\left(x^2+10x+24\right)+128\)(*)

Đặt x2 + 10 = a , a>0 (1)

=> (*) <=> a(a+24)+128=a2 + 24a+128=(a+8)(a+16) (**)

Thay (1) vào (**) ta được :

(*) <=> \(\left(x^2+10+8\right)\left(x^2+10+16\right)\)

11 tháng 7 2017

mấy câu còn lại tương tự

1 tháng 9 2019

\(a,x^2+y^2-x-y=8\)

\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}-8,5=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5=0\)

Ta có : \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5\ge-8,5\forall x;y\)

Để VP=0 và là các số nguyên 

=>\(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=8,5\)

1 tháng 9 2019

a/ x^2 + y^2 - x - y = 8

<=> 4x^2 + 4y^2 - 4x - 4y = 32

<=> (2x - 1)^2 + (2y - 1)^2 = 34

<=> (2x - 1)^2 = 9 và (2y - 1)^2 = 25

Hoặc (2x - 1)^2 = 25 và (2y - 1)^2 = 9