
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Ta có: \(x^2+x=x^2y-xy+y\)
\(\Leftrightarrow x^2+x-x^2y+xy-y=0\)
\(\Leftrightarrow x^2\left(1-y\right)+x\left(1+y\right)-y=0\)
\(\Delta=\left(1+y\right)^2+4y\left(1-y\right)\)
\(=y^2+2y+1+4y-4y^2=-3y^2+6y+1\)
Để PT có nghiệm thì \(\Delta\ge0\Leftrightarrow-3y^2+6y+1\ge0\)
\(\Rightarrow\frac{3+2\sqrt{3}}{3}\ge y\ge\frac{3-2\sqrt{3}}{3}\Leftrightarrow2\ge x\ge0\)
Vì y nguyên nên ta xét các TH sau:
TH1: \(y=0\Rightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)
TH2: \(y=1\Rightarrow x^2+x=x^2-x+1\Leftrightarrow2x=1\Rightarrow x=\frac{1}{2}\left(ktm\right)\)
TH3: \(y=2\Rightarrow x^2+x=2x^2-2x+2\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy ta có 4 cặp số (x;y) thỏa mãn ...


a, \(xy+4x-2y=2\)
\(\Rightarrow y\left(x-2\right)+4\left(x-2\right)=-6\)
\(\Rightarrow\left(x-2\right)\left(y+4\right)=-6\)
\(x-2\) | 1 | -6 | -1 | 6 | 2 | -3 | -2 | 3 |
\(y+4\) | -6 | 1 | 6 | -1 | -3 | 2 | 3 | -2 |
\(x\) | 3 | -4 | 1 | 8 | 4 | -1 | 0 | 5 |
\(y\) | -10 | -3 | 2 | -5 | -7 | -2 | -1 | -6 |

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=-1\). rồi xét TH.

a,xy-4x=35-5y<=>xy-4x+5y=35<=>xy-4x+5y-20=35-20<=>x(y-4)+5(y-4)=15<=>(x+5)(y-4)=15=1.15=15.1=......
b,x2+x+6=y2<=>4(x2+x+6)=4y2<=>4x2+4x+1+5=4y2<=>(2x+1)2+5=(2y)2<=>(2y)2-(2x+1)2=5<=>(2y-2x-1)(2y+2x+1)=5=1.5=....
Lớp 8 không làm kiểu vậy
a) \(x\left(y-4\right)=35-5y\) với y= 4 không phải nghiệm
\(x=\frac{35-5y}{y-4}=\frac{15-5\left(y-4\right)}{y-4}=\frac{15}{y-4}-5\)
y-4=U(15)={-15,-5,-3,-1,1,3,5,15}
=> y={-11,-1,1,3,5,7,9,19}
=> x={-6,-8,-10,-20,10,0,-2,-4}
b)
\(\left(2x+1\right)^2=4y^2-24+1=4y^2-23\)
Hiệu 2 số chính phương =23 chỉ có thể là 11 và 12
\(\hept{\begin{cases}\left(2y\right)^2=12^2\Rightarrow y=+-6\\\left(2x+1\right)^2=11^2\Rightarrow x=5hoac-6\end{cases}}\)
2( x + y ) = xy
<=> 2x + 2y - xy = 0
<=> 2x - xy + 2y - 4 = -4
<=> ( 2x - xy ) - ( 4 - 2y ) = -4
<=> x( 2 - y ) - 2( 2 - y ) = -4
<=> ( 2 - y )( x - 2 ) = -4
Vì x, y nguyên => 2 - y nguyên và x - 2 nguyên
Lại có -4 = -1.4 = -2.2 = -4.1
đến đây bạn tự làm tiếp =))