K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

\(\Leftrightarrow3y^2+2x^2+4x=19\)

\(\Rightarrow3y^2+2x^2+4x-19=0\)

\(\Rightarrow\frac{\sqrt{3}y-\sqrt{-2x^2-4x+19}}{\sqrt{3}}=0\)

\(\Rightarrow3y=\sqrt{-2x^2-4x+19}\)

=> Nghiệm đc xác định dưới dạng hàm ẩn

\(y=+-\frac{\sqrt{-2x^2-4x+19}}{\sqrt{3}}\)

10 tháng 2 2016

\(\Leftrightarrow3y^2+2x^2+4x=19\)

\(\Rightarrow3y^2+2x^2+4x-19=0\)

\(\Rightarrow\frac{\sqrt{3}y-\sqrt{-2x^2-4x+19}}{\sqrt{3}}=0\)

\(\Rightarrow3y=\sqrt{-2x^2-4x+19}\)

=> Nghiệm đc xác định dưới dạng hàm ẩn

\(y=+-\frac{\sqrt{-2x^2-4x+19}}{\sqrt{3}}\)

5 tháng 10 2021

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

5 tháng 10 2021

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

9 tháng 1 2021

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

9 tháng 1 2021

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).

10 tháng 4 2022

tham khảo:

 <=> 2x^2+3y^2+4x -19 =0

<=> 2.(x2 + 2x +1) + 3.y2 = 21

<=> 2.(x+1)2 + 3. y2 = 21

Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 ≤≤≤ 21 và (x+1)2 là số chính phương

=> (x+1)2 =0 hoặc  9 

+) x + 1 = 0 => x = -1 => y 2 = 7 => loại

+) (x+1)= 9 => y= 1

=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4

y2 = 1 => y = 1 hoặc y = -1

Vậy....

3 tháng 9 2020

a, \(x^2-4x+3=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

TH1 : x = 3 ; TH2 : x = 1

b, \(2x^2-3x-2=0\Leftrightarrow\left(x-2\right)\left(x+\frac{1}{2}\right)=0\)

TH1 : x = 2 ; TH2 : x = -1/2 

c, Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2+2t-8=0\Leftrightarrow\left(t-2\right)\left(t+4\right)=0\)

TH1 : t  = 2 ; TH2 : t = -4 

Tương tự ... 

3 tháng 9 2020

1a) 

x2 - 4x + 3 = x2 - x - 3x + 3 

                  = x( x - 1 ) - 3( x - 1 )

                  = ( x - 1 )( x - 3 )

2c) 

2x2 - 3x - 2 = 2x2 + x - 4x - 2 

                   = x( 2x +1 ) - 2( 2x + 1 )

                   = ( 2x + 1 )( x - 2 ) 

3e)

x4 + 2x2 - 8 (*)

Đặt t = x2

(*) <=> t2 + 2t - 8

       = t2 - 2t + 4t - 8 

       = t( t - 2 ) + 4( t - 2 )

       = ( t - 2 )( t + 4 )

       = ( x2 - 2 )( x2 + 4 )

4b) x2 + 4x - 12 = x2 - 2x + 6x - 12

                          = x( x - 2 ) + 6( x - 2 )

                          = ( x - 2 )( x + 6 )

d) 2x3 + x - 2x2 - 1 = 2x2( x - 1 ) + 1( x - 1 )

                               = ( x - 1 )( 2x2 + 1 )

f) x2 - 2xy - 3y2 = ( x2 - 2xy + y2 ) - 4y2

                         = ( x - y )2 - ( 2y )2

                         = ( x - y - 2y )( x - y + 2y )

                         = ( x - 3y )( x + y )

27 tháng 7 2023

Ta có: 

\(2x+y=11z\) và \(3x-y=4z\)

Chia theo vế ta có:

\(\dfrac{2x+y}{3x-y}=\dfrac{11z}{4z}=\dfrac{11}{4}\)

\(\Leftrightarrow4\left(2x+y\right)=11\left(3x-y\right)\)

\(\Leftrightarrow8x+4y=33x-11y\)

\(\Leftrightarrow15y=25x\)

\(\Leftrightarrow3y=5x\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}=k\)

\(\Rightarrow x=3k,y=5k\)

 Thay vào Q ta có:

\(Q=\dfrac{2\cdot\left(3k\right)^2-3\cdot3k\cdot5k}{\left(3k\right)^2+3\cdot\left(5y\right)^2}\)

\(Q=\dfrac{18k^2-45k^2}{9k^2+75k^2}\)

\(Q=\dfrac{k^2\left(18-45\right)}{k^2\left(9+75\right)}\)

\(Q=\dfrac{-27}{84}=-\dfrac{9}{28}\)

\(\dfrac{2x+y}{3x-y}=\dfrac{11}{4}\)

=>33x-11y=8x+4y

=>25x=15y

=>5x=3y

=>x/3=y/5=k

=>x=3k; y=5k

\(Q=\dfrac{2\cdot9k^2-3\cdot3k\cdot5k}{9k^2+3\cdot25k^2}=\dfrac{18-9\cdot5}{9+3\cdot25}=\dfrac{-9}{28}\)

1/2x^3y(2x^4y^3-4xy-6)

=1/2x^3y*2x^4y^3-1/2x^3y*4xy-1/2x^3y*6

=x^7y^4-2x^4y^2-3x^3y