\(F\left(x\right)=x^2-4x\)
Giải: \(x^2-4x=0\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

mình làm lại câu b) nha

b) |x-3|=-4

th1: x-3=-4

x=3+(-4)

x=-1

th2: x-3=4

x=3+4

x=7

24 tháng 7 2017

b) \(\left|x-3\right|=-4\)

t/h1:\(x-3=-4\)

\(x=3-\left(-4\right)\)

\(x=7\)

t/h2:\(x-3=4\)

\(x=3-4\)

\(x=-1\)

29 tháng 7 2018

cái này đc gọi là câu hỏi hả?

a: =>|x-1/4|=3/4

=>x-1/4=3/4 hoặc x-1/4=-3/4

=>x=1 hoặc x=-1/2

b: \(\left|x+\dfrac{1}{2}\right|=\dfrac{1}{2}-\dfrac{9}{4}=\dfrac{2-9}{4}=-\dfrac{7}{4}\)(vô lý)

c: \(\Leftrightarrow\left[{}\begin{matrix}2x+5=1-x\\2x+5=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\x=-6\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{4}{3};-6\right\}\)

e: =>|3/2-x|=0

=>3/2-x=0

hay x=3/2

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

3 tháng 9 2019

\(a,\frac{15^3.\left(-5\right)^4}{\left(-3\right)^5.5^6}\)\(=\frac{3^3.5^3}{\left(-3\right)^5.5^2}\)\(=-\frac{5}{\left(3\right)^2}=-\frac{5}{9}\)

\(b,\frac{6^3.2.\left(-3\right)^2}{\left(-2\right)^9.3^7}\)\(=-\frac{6^3}{2^8.3^5}\)\(=-\frac{2^3.3^3}{2^8.3^5}\)\(=-\frac{1}{2^5.3^2}=-\frac{1}{288}\)

\(c,\frac{3^6.7^2-3^7.7}{3^7.21}\)\(=\frac{3^6.7\left(7-3\right)}{3^7.21}\)\(=\frac{3^6.7.4}{3^7.7.3}\)\(=\frac{4}{3.3}=\frac{4}{9}\)

3 tháng 9 2019

\(a,\left(x-1,2\right)^2=4\)

\(\Rightarrow x-1,2=2\)

\(\Rightarrow x=3,2\)

\(b,\left(x+1\right)^3=-125\)

\(\Rightarrow\left(x+1\right)^3=\left(-5\right)^3\)

\(\Rightarrow x+1=-5\Rightarrow x=-6\)

\(c,\left(x-5\right)^3=2^6\)

\(\Rightarrow\left(x-5\right)^3=4^3\)

\(\Rightarrow x-5=4\Rightarrow x=9\)

\(d,\left(2x+1\right)^{x+1}=5^{x+1}\)

\(\Rightarrow2x+1=5\Rightarrow x=2\)

9 tháng 8 2018

Bài này khó quá :<< t ko biết làm

10 tháng 8 2018

a)trời, nó dễ đến hiển nhiên luôn ý
x. số j ko cần biết mà = 0
thì 1 trong hai x hoặc căn x-2 sẽ là 0
căn mà ra 0 thì chỉ có căn 0 thôi
x-2=0 => x=2

hoặc x = 0
Từ đó:
2. căn 2-2 = 0
2. 0 = 0

b)cái này y chang cái trên, 1 trong 2 là 0
x căn để đc 0 thì chỉ có 0
còn x mũ 2 trừ 4 để bằng 0 thì x mũ 2 chỉ có 4

x mũ 2 = 4
x = 2
Đáp án: 2 hoặc 0

c) x phần x mà để đc bằng nhau thì |x| = x
đáp án: ∞

31 tháng 3 2020

Bài 1:

1. Thay x=-5;y=3 vào P ta được:

P=\(2.\left(-5\right)\left[\left(-5\right)+3-1\right]+\left(3\right)^2+1\)=40

2. P=2x(x+y-1)+y2+1

\(\Leftrightarrow P=2x^2+2xy-2x+y^2+1\)

\(\Leftrightarrow P=\left(x+y\right)^2+(x^2-2.\frac{1}{2}x+\frac{1}{4})+\frac{3}{4}\)

\(\Leftrightarrow P=\left(x+y\right)^2+(x-\frac{1}{2})^2+\frac{3}{4}\) >0 \(\forall x;y\:\)

Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha

31 tháng 3 2020

Bài 2:

1. f(x)=g(x)-h(x)=4x2+3x+1-(3x2-2x-3)

\(\Leftrightarrow f\left(x\right)=x^2+5x+4\)

2. Thay x=-4 vào f(x) ta được: f(4)=(-4)2+5(-4)+4=0

Vậy x=-4 là nghiệm của f(x)

3. \(\Leftrightarrow f\left(x\right)=x^2+5x+4\)

\(\Leftrightarrow f\left(x\right)=x\left(x+1\right)+4\left(1+x\right)\)

\(\Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x+1\right)\)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

Vậy tập hợp nghiệm của f(x) là \(\left\{-4;-1\right\}\)

Bạn tham khảo nha, không hiểu cứ hỏi mình ha

a,

Trước khi sắp xếp ta thu gọn các đa thức trên

P(x)=-2x\(^2\)+3x\(^4\)+x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)x

=(x\(^2\)-2x\(^2\))+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)

=-1x\(^2\)+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)x

Q(x)=3x\(^4\)+3x\(^2\)-\(\dfrac{1}{4}\)-4x\(^3\)-2x\(^2\)

=(3x\(^2\)-2x\(^2\))+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)

=x\(^2\)+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)

Sau khi thu gọn ta đi sắp xếp các đa thức theo lũy thừa giảm dần của biến

P(x)=3x\(^4\)+x\(^3\)-1x\(^2\)-\(\dfrac{1}{4}\)x

Q(x)=3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)

b,Tính

+P(x)+Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x+3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)

=(3x\(^4\)+3x\(^4\))+(x\(^3\)-4x\(^3\))+(x\(^2\)-x\(^2\))-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)

=6x\(^4\)-3x\(^3\)-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)

+P(x)-Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-(3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\))

=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-3x\(^4\)+ 4x\(^3\)-x\(^2\)+\(\dfrac{1}{4}\)

=(3x\(^4\)-3x\(^{^{ }4}\))+(x\(^3\)+4x\(^3\))-(x\(^2\)+x\(^2\))-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)

=5x\(^3\)-4x\(^2\)-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)

c,

Ta có:P(0)=3.0\(^4\)+0\(^3\)-0\(^2\)-\(\dfrac{1}{4}\).0

=3.0+0-0-0

=0(thỏa mãn)

Lại có:Q(0)=3.0\(^4\)+0\(^2\)-4.0\(^3\)-\(\dfrac{1}{4}\)

=3.0+0-4.0-\(\dfrac{1}{4}\)

=0-\(\dfrac{1}{4}\)

=-\(\dfrac{1}{4}\)(vô lí)

Vậy x=0 là nghiệm của đa thức P(x) nhưng ko phải là nghiệm của đa thức Q(x)