Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik tự trả lời nhé (đương nhiên ko tick nha giải cho mn hỉu thoy =))
C1: đặt \(\sqrt{\dfrac{4x+9}{28}}=y+\dfrac{1}{2}\)
=>\(\dfrac{4x+9}{28}=y^2+y+\dfrac{1}{4}\Leftrightarrow7y^2+7y=x+\dfrac{1}{2}\)
kết hợp vs pt đầu ta được hpt đối xứng \(\left\{{}\begin{matrix}7x^2+7x=y+\dfrac{1}{2}\\7y^2+7y=x+\dfrac{1}{2}\end{matrix}\right.\)
(mời @Neet giải tip nha mỏi tay )
C2:
pt <=> \(28\left(49x^4+98x^3+49x^2\right)=4x+9\)
<=>\(\left(14x^2+12x-1\right)\left(98x^2+112x+9\right)=0\)
=> do yourself !!!
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
Bình phương 2 vế thu gọn đc
\(x^4+14x^3+77x^2+192x+180=0\)
PT ĐT thành NT
\(\left(x+3\right)^2\left(x^2+8x+20\right)=0\)
từ đó suy ra nghiệm pt=-3
x^2 + 7x = căn[(4x+9)/28] (1)
<=> 7(x+1/2)^2 - 7/4 = căn[(4x+9)/28]
Đặt căn[(4x+9)/28] = y + 1/2 (2)
<=> 7y^2 + 7y = x+1/2 (bình phương 2 vế rồi thu gọn) (3)
Mặt khác thay (2) vào (1) ta được: 7x^2 + 7x = y +1/2 (4)
Lấy (3)-(4), ta có: 7(x-y)(x+y+1)=-(x-y) <=>(x-y)(7x+7y+8)=0
<=> x-y =0 (vì 7x+7y+8 >0)
<=> x=y
a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (1)
\(\Leftrightarrow9x-7=\sqrt{\left(7x+5\right)\left(7x+5\right)}\)
\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)\left(7x+5\right)}=7\)
\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)^2}=7\)
\(\Leftrightarrow9x-\left|7x+5\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}9x-\left(7x+5\right)=7\left(đk:7x+5\ge0\right)\\9x-\left[-\left(7x+5\right)\right]=7\left(đk:7x+5< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(đk:x\ge-\dfrac{5}{7}\right)\\x=\dfrac{1}{8}\left(đk:x< -\dfrac{5}{7}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow x=6\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{6\right\}\)
b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\) (2)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3\cdot\dfrac{\sqrt{x+5}}{3}-\dfrac{1}{3}\cdot\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow\sqrt{4}\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot\sqrt{9}\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}=4\)
\(\Leftrightarrow\sqrt{x-5}=4-\sqrt{x+5}\)
\(\Leftrightarrow x-5=\left(4-\sqrt{x+5}\right)^2\)
\(\Leftrightarrow x-5=16-8\sqrt{x+5}+x+5\)
\(\Leftrightarrow-5=16-8\sqrt{x+5}+5\)
\(\Leftrightarrow-5=21-8\sqrt{x+5}\)
\(\Leftrightarrow8\sqrt{x+5}=21+5\)
\(\Leftrightarrow8\sqrt{x+5}=26\)
\(\Leftrightarrow\sqrt{x+5}=\dfrac{13}{4}\)
\(\Leftrightarrow x+5=\dfrac{169}{16}\)
\(\Leftrightarrow x=\dfrac{169}{16}-5\)
\(\Leftrightarrow x=\dfrac{89}{16}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{89}{16}\right\}\)
Nick cũ không đi giải lấy nick mới giải làm gì vậy Tuấn Anh Phan Nguyễn ? :D
7x2+7x=√4x+9287x2+7x=4x+928
⇔7(x+12)2−74=√17(x+12)+14⇔7(x+12)2−74=17(x+12)+14
Đặt √17(x+12)+14=y17(x+12)+14=y
Khi đó, ta có hệ đối xứng loại (II) như sau:
{7y2−(x+12)=747(x+12)2−y=74{7y2−(x+12)=747(x+12)2−y=74
Đến đây bạn làm tiếp được rồi