Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Tìm nghiệm nguyên dương của phương trình.
a. 13x+3y=50
Nhận thấy 13x≤13.3=39<50 nên x≤3.
+ x=3 thì không tìm được y thoả mãn.
+ x=2 thì y=8.
+ x=1 thì không tìm được y thoả mãn.
+ x=0 thì không tìm được y thoả mãn.
Vậy (x,y)=(2,8).
Ta có (40;31) = 1 nên phương trình có nghiệm nguyên
Tìm nghiệm riêng của pt
40 = 31.1 + 9
31 = 9.3 + 4
9 = 4.2 + 1
\(\Rightarrow40.7+31.\left(-9\right)=1\)
\(\Rightarrow\hept{\begin{cases}x_0=7\\y_0=-9\end{cases}}\)
Vậy phương trình có nghiệm nguyên là \(\hept{\begin{cases}x=7+31t\\y=-9-40t\end{cases}\left(t\in Z\right)}\)
Phương trình 5 x 2 + 21x − 36 = 0 có a + b + c = 5 +21 – 26 = 0 nên phương trình có hai nghiệm phân biệt là x 1 = 1 ; x 2 = - 26 5 . Khi đó B = 5. (x − 1) x + 26 5
Đáp án: C
a/
Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'=m^2-2\left(m^2-2\right)>0\Leftrightarrow-m^2+4>0\)
\(\Leftrightarrow m^2<\)\(4\Leftrightarrow-2<\)\(m<2\)
Khi đó, pt có 2 nghiệm phân biệt \(x_1;\text{ }x_2\text{ thỏa: }x_1+x_2=-\frac{b}{a}=m;\text{ }x_1.x_2=\frac{c}{a}=\frac{m^2-2}{2}\)
Để x1; x2 dương thì \(x_1+x_2=m>0;\text{ }x_1.x_2=\frac{m^2-2}{2}>0\)
\(\Leftrightarrow m>0;\text{ }m^2>2\Leftrightarrow m>0;\text{ }\left(m>\sqrt{2}\text{ hoặc }x<-\sqrt{2}\right)\)
\(\Leftrightarrow m>\sqrt{2}\)
Đối chiếu điều kiện, ta được \(\sqrt{2}<\)\(m<2\)
b/
phương trình có 2 nghiệm không âm \(\Leftrightarrow x_1+x_2=m\ge0;\text{ }x_1.x_2=\frac{m^2-2}{2}\ge0\)\(\Leftrightarrow m\ge0;\text{ }m\ge\sqrt{2}\text{ hoặc }m\le-\sqrt{2}\Leftrightarrow\sqrt{2}\le m<2\)
Nghiệm dương lớn hơn là:
\(x=\frac{m+\sqrt{4-m^2}}{2}\)
Với 2 số thức a, b bất kì, ta có: \(\left(a-b\right)^2\ge0\Rightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\). Dấu "=" xảy ra khi a = b.
Suy ra \(\left(m+\sqrt{4-m^2}\right)^2\le2\left(m^2+4-m^2\right)=8\)
\(\Rightarrow x=\frac{m+\sqrt{4-m^2}}{2}\le\frac{2\sqrt{2}}{2}=\sqrt{2}\)
Dấu "=" xảy ra khi \(m=\sqrt{4-m^2}\Leftrightarrow m=\sqrt{2}\text{ (thỏa mãn) }\)
Vậy nghiệm dương lớn nhất của pt là \(\sqrt{2}\) khi \(m=\sqrt{2}\)
chắc là nghiệm nguyên dương chứ nhỉ?Mình giải với nghiệm nguyên nhé:
31y<=280-21>>>y<=8 mà 21x chia hết cho 7,280 chia hết cho 7 suy ra 31y chia hết cho 7 suy ra y=(280-31.7)/21>>x=3
Vậy x=3;y=7