Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=4+m^2-3=m^2+1>0\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-m^2+3\end{matrix}\right.\)
Kết hợp hệ thức Viet và điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_2=3x_1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+3x_1=4\\x_2=3x_1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=1\\x_2=3\end{matrix}\right.\)
Lại có: \(x_1x_2=-m^2+3\)
\(\Leftrightarrow1.3=-m^2+3\Rightarrow-m^2=0\Rightarrow m=0\)
\(\left\{{}\begin{matrix}x^2+2xy-3y^2=-4\left(1\right)\\2x^2+xy+4y^2=5\left(2\right)\end{matrix}\right.\)\(với\)\(y=0\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}x^2=-4\\2x^2=5\end{matrix}\right.\)\(\left(loại\right)\)
\(y\ne0\) \(đặt:x=t.y\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}t^2y^2+2ty^2-3y^2=-4\left(3\right)\\2t^2y^2+ty^2+4y^2=5\left(4\right)\end{matrix}\right.\)
\(\Leftrightarrow5t^2y^2+10ty^2-15y^2=-8t^2y^2-4ty^2-16y^2\)
\(\Leftrightarrow13t^2y^2+14ty^2+y^2=0\)
\(\Leftrightarrow13t^2+14t+1=0\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{1}{13}\\t=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{13}y\left(5\right)\\x=-y\left(6\right)\end{matrix}\right.\)
\(thay\left(5\right)và\left(6\right)\) \(lên\left(1\right)hoặc\left(2\right)\Rightarrow\left(x;y\right)=\left\{\left(1;-1\right);\left(-1;1\right);\left(-\dfrac{1}{\sqrt{133}};\dfrac{13}{\sqrt{133}}\right)\right\}\)
\(pt:x^4-4x^3+x^2+6x+m+2=0\)
\(\Leftrightarrow x^4-4x^3+4x^2-3x^2+6x+m+2=0\)
\(\Leftrightarrow\left(x^2-2x\right)^2-3\left(x^2-2x\right)+m+2=0\left(1\right)\)
\(đặt:x^2-2x=t\ge-1\)
\(\Rightarrow\left(1\right)\Leftrightarrow t^2-3t=-m-2\)
\(xét:f\left(t\right)=t^2-3t\) \(trên[-1;+\text{∞})\) \(và:y=-m-2\)
\(\Rightarrow f\left(-1\right)=4\)
\(f\left(-\dfrac{b}{2a}\right)=-\dfrac{9}{4}\)
\(\left(1\right)\) \(có\) \(3\) \(ngo\) \(pb\Leftrightarrow-m-2=4\Leftrightarrow m=-6\)
a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)
Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)
\(\Leftrightarrow-8m>-28\)
hay \(m< \dfrac{7}{2}\)
Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2
nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì
\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau
Đặt \(t=x^2\left(t\ge0\right)\)
Khi đó phương trình ban đầu tương đương với pt\(t^2-2\left(m+2\right)t+m^2-2m+3=0\) (*)
Để pt ban đầu có 4 nghiệm phân biệt thì pt (*) có hai nghiệm dương phân biệt ⇔
\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)^2-m^2+2m-3>0\\2\left(m+2\right)>0\\m^2-2m+3>0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}6m+1>0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{6}\\m>-2\end{matrix}\right.\)
⇔ \(m>-\dfrac{1}{6}.\)
Giả sử (*) có hai nghiệm là t1, t2. Khi đó theo Viet ta có t1.t2 = m2 - 2m + 3.
Ta có: x1.x2.x3.x4 = t1.t2 = m2 - 2m +3.
Ta có E = m2 - 2m + 3 = (m - 1)2 + 2 ≥ 2.
Min E = 2. Dấu bằng xảy ra khi m = 1.
a/ x2 - 4x + 3 = (x2 - x) + (- 3x + 3) = (x - 1)(x - 3)
Vậy nghiệm đa thức là x = 1 và x = 3
b/ x3 - x2 - x - 2 = (x3 - 2x2) + (x2 - 2x) + (x - 2)
= (x - 2)(x2 + x + 1)
Vì x2 + x + 1 > 0
Nên đa thức có 1 nghiệm là x = 2