Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)`
`A(x) + B(x) = 2x - 4x^2 + 1 + x^3 - 4x^2 + 5 - 2x`
`= x^3 - ( 4x^2 + 4x^2 ) + ( 2x - 2x ) + ( 1+ 5 )`
`= x^3 - 8x^2 + 6`
__________________________________________________________
`b)`
`P(x) + B(x) = A(x)`
`=>P(x) = A(x) - B(x)`
`=>P(x) = 2x - 4x^2 + 1 + x^3 + 4x^2 - 5 + 2x`
`=>P(x) = x^3 + ( -4x^2 + 4x^2 ) + ( 2x + 2x ) + ( 1 - 5 )`
`=>P(x) = x^3 + 4x - 4`
\(a,A=x^3+3x^2-4x-12\)
\(=x^2\left(x+3\right)-4\left(x+3\right)\)
\(=\left(x^2-4\right)\left(x+3\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x+3\right)\)
Thay \(x=2\) vào A, ta được:
\(A=\left(2-2\right)\left(2+2\right)\left(2+3\right)\)
\(=0\)
⇒ \(x=2\) là nghiệm của A
\(B=-2x^3+3x^2+4x+1\)
Thay \(x=2\) vào B, ta được:
\(B=-2\cdot2^3+3\cdot2^2+4\cdot2+1\)
\(=-16+12+8+1\)
\(=5\)
⇒ \(x=2\) không là nghiệm của B
\(b,A+B=x^3+3x^2-4x-12+\left(-2x^3\right)+3x^2+4x+1\)
\(=\left[x^3+\left(-2x^3\right)\right]+\left(3x^2+3x^2\right)+\left(-4x+4x\right)+\left(-12+1\right)\)
\(=-x^3+6x^2-11\)
\(A-B=x^3+3x^2-4x-12-\left(-2x^3+3x^2+4x+1\right)\)
\(=x^3+3x^2-4x-12+2x^3-3x^2-4x-1\)
\(=\left(x^3 +2x^3\right)+\left(3x^2-3x^2\right)+\left(-4x-4x\right)+\left(-12-1\right)\)
\(=3x^3-8x-13\)
#\(Toru \)
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
1: \(A\left(x\right)=-3x^3+4x^2+4x+3\)
\(B\left(x\right)=-3x^3+4x^2-x+7\)
2: \(A-B=0\)
=>4x+3-x+7=0
=>3x+10=0
hay x=-10/3
1)
\(A=9-x^3+4x-2x^3+4x^2-6\)
\(A=(9-6)+\left(-x^3-2x^3\right)+4x+4x^2\)
\(A=3-3x^3+4x+4x^2\)
\(A=-3x^3+4x^2+4x+3\)
\(B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4\)
\(B=(3+4)+(x^3+2x^3-6x^3)+4x^2+(7x-8x)\)
\(B=7-3x^3+4x^2-x\)
\(B=-3x^3+4x^2-x+7\)
2) \(A-B=(-3x^3+4x^2+4x+3)-\) \((-3x^3+4x^2-x+7)\)
\(A-B=-3x^3+4x^2+4x+3+\)\(3x^3-4x^2+x-7\)
\(A-B\) \(=\left(-3x^3+3x^3\right)+\left(4x^2-4x^2\right)+\left(4x+x\right)+\left(3-7\right)\)
\(A-B\) \(=5x-4\)
Đặt tên cho đa thức \(5x-4\) là \(H\left(x\right)\)
Cho \(H\left(x\right)=0\)
hay \(5x-4=0\)
\(5x\) \(=0+4\)
\(5x\) \(=4\)
\(x\) \(=4:5\)
\(x\) \(=\) \(0,8\)
Vậy \(x=0,8\) không phải là nghiệm của H(\(x\))
MIK KHÔNG CHẮC LÀ CÂU 2 ĐÚNG
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
Bài 7:
Cho x+5=0
=> x=-5
Cho x2-2x=0
=> x2-2x+1-1=0
=>(x-1)2-1=0
=>(x-1)2=1
=>x-1=1 thì x=2
Nếu x-1=-1 thì x=1
TK MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA